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Topological defects and interactions in nematic emulsions
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Inverse nematic emulsions, in which surfactant-coated water droplets are dispersed in a nematic host fluid,
have distinctive properties that set them apart from dispersions of two isotropic fluids or of nematic droplets in
an isotropic fluid. We present a comprehensive theoretical study of the distortions produced in the nematic host
by the dispersed droplets and of solvent-mediated dipolar interactions between droplets that lead to their
experimentally observed chaining. A single droplet in a nematic host acts like a macroscopic hedgehog defect.
Global boundary conditions force the nucleation of compensating topological defects in the nematic host.
Using variational techniques, we show that in the lowest energy configuration, a single water droplet draws a
single hedgehog out of the nematic host to form a tightly bound dipole. Configurations in which the water
droplet is encircled by a disclination ring have higher energy. The droplet dipole induces distortions in the
nematic host that lead to an effective dipole-dipole interaction between droplets, and hence to chaining.
@S1063-651X~98!07601-6#

PACS number~s!: 61.30.Jf, 77.84.Nh, 61.30.Cz
e-
s

h

so

t
di
ile
on
o
a

te
t,
is
d

i-
ce
ie
ge

en
ro
n

p

ter
o-

r
by
r-

ide-
al.
m-
liq-
f

gies
ese
x-

tic
ns
is-
nd.
ns.
ct,

ary
ill

en-
cts
s
or

ach
te

ty.
tic

lo-
the

cal
I. INTRODUCTION

Topological defects@1–4#, which are a necessary cons
quence of broken continuous symmetry, exist in system
disparate as superfluid helium 3@5# and 4 @6#, crystalline
solids@7–9#, liquid crystals@10,11#, and quantum Hall fluids
@12#. They play an important if not determining role in suc
phenomena as response to external stresses@8,9#, the nature
of phase transitions@4,13,14#, or the approach to equilibrium
after a quench into an ordered phase@15#; and they are the
primary ingredient in such phases of matter as the Abriko
flux-lattice phase of superconductors@16,17# or the twist-
grain-boundary phase of liquid crystals@18–20#. They even
arise in certain cosmological models@21#. Given the univer-
sal nature of topological defects, it is always interesting
find new systems that allow us to increase our understan
of these defects. In this paper, we will present a deta
theoretical investigation of a new class of nematic emulsi
@22# whose intriguing properties are controlled by a class
topological defects called hedgehogs. These emulsions
either simple inverse emulsions in which surfactant-coa
water droplets are dispersed in an aligned nematic hos
they are multiple emulsions in which water droplets are d
persed in larger nematic drops that in turn are disperse
water.

Liquid crystals are ideal materials for studying topolog
cal defects. Distortions yielding defects are easily produ
through control of boundary conditions, surface geometr
and external fields. The resulting defects are easily ima
optically. The many different liquid crystalline phases~nem-
atic, cholesteric, smectic-A, smectic-C, etc.! with different
symmetry ground states make it possible to study differ
kinds of defects. Over the years, liquid crystals have p
vided us with detailed and visually striking informatio
about topological defects.

Liquid crystal emulsions in which surfactant-coated dro
571063-651X/98/57~1!/610~16!/$15.00
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containing a liquid-crystalline material are dispersed in wa
have been a particularly fruitful medium for studying top
logical defects@23–26,10#. The liquid-crystalline drops are
typically from 10 to 50mm in diameter, and are visible unde
a microscope. Changes in alignment direction, specified
the Frank directorn, are easily studied under crossed pola
izers. The isolated drops in these emulsions provide an
alized spherical confining geometry for the liquid cryst
More general distorted or multiply connected random geo
etries@26# such as those produced in polymer-dispersed
uid crystals@27,28#, in emulsion films, or in dispersions o
agglomerations of silica spheres in a nematic host@29# are of
considerable current interest because of display technolo
based upon changing the light scattering properties of th
systems through modification of defect distributions via e
ternal fields.

In this paper, we will study inverse and multiple nema
emulsions. These emulsions differ from the direct emulsio
described above, in that isotropic water droplets are d
persed in a nematic host rather than the other way arou
They are considerably more complex than direct emulsio
In direct emulsions, the nematic is separated into distin
nearly spherical drops. Normal or homeotropic bound
conditions on the nematic director at a drop’s surface w
lead to a single point hedgehog defect in its interior; tang
tial boundary conditions will lead to a pair of surface defe
called boojums@30,25,31#. Though there can be transition
among various director configurations as temperature
boundary conditions are changed@32,33#, the topological
structure of these drops is simple. In inverse emulsions, e
water drop with homeotropic boundary conditions will crea
a hedgehog director configuration in its immediate vicini
Global boundary conditions at the surface of the nema
restrict total topological charge. Thus, in order to satisfy g
bal constraints, additional defects must be created out of
nematic to compensate for or to cancel the topologi
610 © 1998 The American Physical Society
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57 611TOPOLOGICAL DEFECTS AND INTERACTIONS IN . . .
charge created by droplets. The nature and placemen
these additional defects determine the far-field director
tortion produced by a droplet and the nature of drop
droplet interactions. Experiments@22,34# show that each wa
ter droplet creates a companion point defect leading to dip
distortions of the director field at large distances. This is
contrast to the quadrupolar ‘‘Saturn-ring’’ configuration
which a disclination ring encircles a droplet at its equa
that has been extensively studied@35–38#. Our calculations
show that the experimentally observed dipole configurat
is the preferred one, and that it leads to a dipole-dipole
teraction between drops that gives rise to the experimen
observed chaining of droplets. It is interesting to note t
similar topological dipole configurations appear in tw
dimensional systems including~1! free standing smectic
films @39#, where a circular region with an extra layer pla
the role of the emulsion water droplet; and~2! Langmuir
films @40# in which a liquid-expanded inclusion in a tilte
liquid-condensed region plays a similar role.

The outline of this paper is as follows. In Sec. II, w
review important elastic and topological properties of ne
atics. In Sec. III, we provide an overview of important e
perimentally observed properties of inverse and multi
nematic emulsions. In Sec. IV, we calculate the director c
figurations and energy of a single water droplet in a unifo
nematic using various variationalAnsätze. In Sec. V, we in-
troduce a phenomenological free energy to describe lo
distance director distortions and interactions among drop
Finally, In Sec. VI, we summarize our results.

II. ORDER, ENERGY, AND TOPOLOGICAL DEFECTS
IN NEMATICS

A nematic liquid crystal is a uniaxial, homogeneous flu
characterized by a unit vectorn, called the Frank director
specifying the direction of the principal axis of a symmetr
traceless-tensor order parameter. The ground-state free
ergy of a nematic is invariant under all spatially unifor
rotations ofn and under all inversionsn→2n. In addition,
all physically observable quantities are invariant und
n→2n. The ground-state manifold or order-parameter sp
is the unit sphere in three dimensionsS2 with opposite points
identified, i.e., the projective planeRP25S2/Z2 @2,3,10#.
The topological structure of the ground-state manifold de
mines the types of possible topological defects. As we w
review below, nematics can have both line defects~disclina-
tions! and point defects~hedgehogs!.

A. Frank free energy

The energy of slowly varying spatial distortions of th
directorn~r ! is determined by the Frank free energy

F5 1
2 E d3r $K1~“•n!21K2~n•“3n!21K3@n3~“3n!#2%

2E d3r K 24“•@n3~“3n!1n~“•n!#, ~1!

where K1 , K2 , K3 , and K24 are, respectively, the splay
twist, bend, and saddle-splay elastic constants.@There is also
the possibility of another surface term with ener
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K13“•(n“•n) @41,42#, which we will not consider in this
paper.# The saddle-splay term is a pure divergence; it redu
to integrals over all surfaces, including interior surfac
formed, for example, by water droplets. For spherical s
faces with normal boundary conditions, these integrals
constant and do not vary, for example, when separations
tween droplets are changed. To keep our calculations
simple as possible, we will use the one-constant limit of
Frank free energy:

F5 1
2 KE d3r @~“•n!21~“3n!2#

2K24E dS•@n“•n1n3~“3n!#, ~2!

5 1
2 KE d3r ¹ inj¹ inj1

1
2 ~K22K24!

3E dS•@n“•n1n3~“3n!#. ~3!

Since surface energies do not play an important role in
phenomena to be discussed in the paper, we will set
saddle-splay constantK24 equal to zero unless otherwis
specified. WhenK52K24, the free energy reduces to th
first line of Eq. ~3!, which is invariant with respect to rigid
rotations of any director configuration.@Note: In Ref.@22#,
calculations were done withK5K24.#

B. Surface energies

Surfaces generally impose a preferred alignment direc
of the nematic director relative to their local normals. T
energetics of this alignment are described by the Rap
Papoular phenomenological surface free energy@43#

FS5 1
2 WE dS sin2 g, ~4!

where g is the angle between the director and the surfa
normal. Homeotropic or normal alignment is favored
W.0, and tangential alignment byW,0. The coupling con-
stantW varies in the range 1024-1 erg/cm2 @44#, with typical
values of order 331022 erg/cm2 @45#.

In addition to the above surface alignment energy,
emulsions, there is the energy arising from the surface
sion of the water-surfactant-oil interface. This energy is si
ply the surface tensions times the total surface area

Fs5sE dS. ~5!

The surface tension is of order 10 erg/cm2 @46#.
We can now discuss the relative importance of the surf

energies and the bulk Frank energy. Consider a sphe
nematic drop of radiusa with W.0. If the director is every-
where normal to the surface, as the surface alignment en
favors, the Frank elastic energy is 8pKa, and the surface
alignment energy is zero. On the other hand, if the directo
parallel throughout the interior of the drop, the Frank ene
is zero, and the surface alignment energy is 8pWa2/3. The
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612 57LUBENSKY, PETTEY, CURRIER, AND STARK
surface energy scales asa2, whereas the elastic energy scal
asa. Thus surface energy dominates over elastic energy
large drops, and we may assume, to a good approxima
that the preferred direction of surface alignment is impo
as a constraint. On the other hand for small droplets, ela
energy dominates over surface energy, and we should ex
the surface director to deviate from its preferred orientati
The characteristic droplet dimension beyond which we m
assume rigid boundary conditions isr c5K/W'1026/3
31022'0.3 mm. Typical droplet radii in the experiments o
Poulinet al. @22# are larger than 1mm, and we may use rigid
boundary conditions to interpret them.

Similar considerations apply to shape distortions of
droplets. The positive surface tension favors spherical dr
of either liquid crystal in water or of water in liquid crysta
The surface energy scales assa2. Thus, we can expect drop
to be spherical and undistorted by the nematic director
drops larger thanr s5K/s'1 nm. In what follows, we will
assume that water droplets remain spherical and that no
boundary conditions are rigidly imposed at nematic-wa
interfaces.

C. Topological defects

Topological defects in ordered media are singular regi
of spatial dimension less than that of physical space that
surrounded by order-parameter configurations that canno
transformed to a homogeneous ground state via continu
deformations. There are two kinds of topological defects i
nematic. They are~1! line defects, called disclinations, wit
winding number of strength12 in which the director under-
goes a rotation ofp in one circuit around any one
dimensional path encircling the linear defect core, and~2!
point defects, called hedgehogs, in which the director swe
out all directions on the unit sphereS2 as all points on any
two-dimensional surface enclosing the defect core are
ited. The only topologically stable disclinations have win
ing number1

2 . All director configurations on a loop can e
ther be shrunk continuously to a single point in the ord
parameter space, in which case the loop encloses no de
or they can be continuously distorted to a path inRP2 start-
ing at some arbitrary point and ending at a diametrica
opposite point, in which case the loop, encloses a discl
tion of strength 1

2 . Typical director configurations for a
strength1

2 disclination are shown in Fig. 1.
In the simplest disclination configurations shown in F

1, the director is n5(cosf/2,6sinf/2,0), where

FIG. 1. Two director configurations for a strength1
2 disclination.

In a two-dimensional nematic, the left and right figures correspo
respectively, to disclinations of strengths1

1
2 and 2

1
2 . In a three-

dimensional nematic, these configurations can be converted
each other via continuous transformations of the director.
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f5tan21 y/x is the azimuthal angle in thexy plane. The
energy per unit length of such disclination lines calcula
from Eq. ~2! is

e5 1
4 pK ln~R/r c!1ec , ~6!

whereR is the sample radius,r c is the radius of the discli-
nation core, andec is the core energy per unit length, whic
is of orderK.

Hedgehogs are point defects characterized by an inte
topological chargeq specifying the number of times the un
sphere is wrapped by the director on any surface enclo
the defect core. An analytical expression forq is @3#

q5
1

8p E dSie i jkn•~] jn3]kn!, ~7!

where the integral is over any surface enclosing the de
core. For an order parameter withO3 ~vector! symmetry, the
order-parameter space isS2, and hedgehogs can have pos
tive or negative charges. Nematic inversion symmetry ma
positive and negative charges equivalent, and we may,
result, take all charges to be positive.

There is a continuous infinity of director configuration
for each value of the hedgehog charge. In the simplest u
charge hedgehog configuration shown in Fig. 2~a!, the direc-
tor points radially outward from the point core like the ele
tric field near a point charge. This configuration is called

d,

to

FIG. 2. ~a! A radial hedgehog in which the director points rad
ally outward from a central point like the electric field of a poi
charge.~b! A circular hedgehog obtained from a radial hedgehog
rotating the director at every point throughp/2 about the vertical
axis. ~c! A hyperbolic hedgehog obtained from the radial hedgeh
by rotating the director at every point byp about the vertical axis.
In each case, the figures at the left provide a three-dimensi
depiction of the defect, whereas that at the right shows a projec
onto any plane containing the polar axis. In~b!, standard notation in
which the nail heads indicate the end of the director coming ou
the plane is used.
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57 613TOPOLOGICAL DEFECTS AND INTERACTIONS IN . . .
radial hedgehog for obvious reasons. Other configurati
can be obtained from the radial configuration via rotatio
through arbitrary angles about any axis. Two examples
shown in Figs. 2~b! and 2~c!. When the director of a radia
hedgehog is rotated about a fixed axis throughp, a hyper-
bolic hedgehog shown in Fig. 2~c! is produced. The hyper
bolic hedgehog can be obtained from a radial hedgehog v
series of continuous distortions of the director pass
through intermediate configurations such as the ‘‘circula
configuration shown in Fig. 2~b!. Thus, radial, hyperbolic
and all intermediate hedgehogs are topologically equival

The energies of the simple hedgehog configurati
shown in Fig. 2 in a sphere of radiusR with free boundary
conditions at the outer surface are easily calculated from
Frank free energy@Eq. ~1!#. The Frank director for these
configurations aren5(x,y,z)/r for the radial, hedgehog
n5(y,2x,z)/r for the circular, hedgehog an
n5(2x,2y,z)/r for the hyperbolic hedgehog, wher
r5(x,y,z) and r 5 ur u. In a spherical region of radiusR,
their respective energies are

Eradial58p~K12K24!R→8p~K2K24!R,

Ecirc5
8p

15
~3K315K212K125K24!R→

8p

3
~2K2K24!R,

~8!

Ehyper5
8p

15
~3K112K315K24!R→

8p

3
~K1K24!R,

where the final expressions are for the case of equal ela
constants. WhenK2450, these energies reduce to those c
culated in Ref.@33#. The hyperbolic hedgehog has low
energy than the radial hedgehog providedK3,6K1210K24
or K.2K24 for a single elastic constant approximatio
Thus, if K2450, the hyperbolic hedgehog always has t
lower energy. The circular hedgehog has the most be
SinceK3 is generally the largest elastic constant, the circu
hedgehog generally has the highest energy providedK24 is
not too large. IfK52K24, the energies of the three hedg
hog configurations are equal~and equal to 4pKR!, as one
could have predicted from Eq.~2!, which is invariant with
respect to rigid rotations of even a spatially varyingn when
K52K24. In confined geometries, the Rapini-Papoular s
face energy competes with theK24 surface term to determin
defect configurations.

In systems with vector symmetry, the combined topolo
cal charge@i.e., the charge obtained by evaluating Eq.~7! on
any surface enclosing both hedgehog cores# of two hedge-
hogs with respective chargesq1 and q2 is simply the sum
q11q2 . In nematics, the sign of the topological charge h
no meaning, and the combined topological charge of t
hedgehogs is eitheruq11q2u or uq12q2u. It is impossible to
tell with certainty which of these possible charges is the c
rect one by looking only at surfaces enclosing the individ
hedgehogs.

We will be primarily interested in how two unit-charg
hedgehogs can combine to give a hedgehog charge of z
Figure 3 shows how radial and hyperbolic hedgehogs
combine to give a charge-zero configuration, i.e., a confi
ration in which the director is parallel at infinity.
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Disclination rings can carry a hedgehog chargeq as mea-
sured by the integral in Eq.~7! evaluated over a surfac
enclosing the ring@47,48#. Figure 4 depicts disclination ring
with far-field director configurations corresponding to rad
and hyperbolic charge-1 hedgehogs. These rings can
shrunk to a point leaving a point hedgehog. Since the dis
nation ring is topologically equivalent to a hedgehog, o
can ask whether it is energetically favorable for a po
hedgehog to open up to a disclination ring@49,35#. If one
assumes that order parameter configurations remain unia
one can obtain a crude estimate of the radiusR0 of the dis-
clination ring using the expressions,@Eqs. ~6! and ~8!# for
disclination and hedgehog energies. The director configu
tion of a charge-1 disclination ring is essentially that
simple disclination line discussed above Eq.~6! in the vicin-
ity of the disclination core, i.e., up to distances of orderR0
from the ring center. Beyond this radius, the director co
figuration is approximately that of a hedgehog~radial or hy-
perbolic!. Thus we can estimate the energy of a disclinat
ring of radiusR0 centered in a spherical region of radiusR to
be

Ering'2pR0@ 1
4 pK ln~R0 /r c!1ec#18paK~R2R0!,

~9!

wherea512k24 for a radial hedgehog anda5(11k24)/3
for a hyperbolic hedgehog, wherek245K24/K. Minimizing
over R0 and settingec5K, we find

R05r c expF16

p S a2
1

4
2

p

16D G . ~10!

Though admittedly crude, this approximation gives a res
that has the same form as that calculated in Refs.@49, 35,

FIG. 3. A radial and a hyperbolic hedgehog combining to giv
configuration with hedgehog charge zero.

FIG. 4. Disclination rings with unit hedgehog charge:~a! radial
hedgehog and~b! hyperbolic hedgehog. The dotted line in ea
figure represents a sphere of radiusR beyond which the director
configuration is that of a hedgehog.
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614 57LUBENSKY, PETTEY, CURRIER, AND STARK
50#, using a more sophisticated continuousAnsatz. It has the
virtue that it applies to both radial and hyperbolic far-fie
configurations. It predicts that the hedgehog with the low
energy far-field configuration~i.e., the one with smallera!
will have the smaller disclination-ring radius. Ifk2450, the
hyperbolic hedgehog has the lower energy witha5 1

3 rather
thana51. In this case, the core of a radial hedgehog sho
be a ring with radiusR0'r ce

2.8, or R0'0.2 mm for
r c'100 Å. The core of the hyperbolic hedgehog, on t
other hand, will be a point rather than a ring becau
R0'r ce

20.58,r c .
If the constraint that the tensor nematic order param

Qi j be uniaxial is relaxed, then the core of a disclination c
become biaxial@51#, with a core radius of order the biaxia
correlation lengthjb . The energy of a disclination is stil
given by Eq.~10! with r c;jb , and with a core energy de
termined by the energy difference between the biaxial
uniaxial state rather than the energy difference between
isotropic and nematic states. A hedgehog can also devel
biaxial core with radius of orderjb . Because the biaxial cor
is characterized by a nonvanishing biaxial order parame
its structure is not the same as that of the uniaxial discli
tion ring discussed above. Calculations@52# based on the
Landau–de Gennes free energy for a nematic predict a b
ial core size of order 0.025mm for MBBA ~methoyxbenzil-
idene butylanine!. A detailed analysis of the competition be
tween a biaxial core and a biaxial disclination ring has
been done.

It is very difficult to predict with certainty what the cor
structure of a hedgehog will be. If the core is a disclinati
ring, its radius varies exponentially with the elastic co
stants. If the core is biaxial, it will have a biaxial structu
out to a radius of order the biaxial correlation length, whi
should be of order 100 Å or less. The general argume
given above would lead one to expect hyperbolic hedgeh
to have the smallest core size. In the experiments of Po
and co-workers@22,34#, all hyperbolic hedgehogs that wer
observed have cores that are pointlike to the resolution of
optical microscope.

III. DIRECTOR CONFIGURATIONS
IN INVERTED NEMATIC EMULSIONS

In the experiments reported by Poulinet al. @22#, a nem-
atic liquid crystal~pentyl cyano biphenyl, or 5CB!, a surfac-
tant ~sodium dodecyl sulfate, SDS! and water are mixed to
gether to produce inverted and multiple liquid crystalli
emulsions. The inverted emulsions are placed in a thin r
angular cell of approximate dimensions 20mm31 cm
31 cm. The large-area upper and lower surfaces w
treated to produce tangential boundary conditions. Thus
total hedgehog chargeQ in the cell, obtained by performing
the integral in Eq.~7!, is zero. With normal boundary cond
tions, each water droplet nucleates a radial hedgehog
charge 1. To maintain zero charge in the cell, compensa
director distortions, usually point or line defects, must
created out of the nematic itself. Possible director configu
tions of a single droplet with total charge zero are shown
Fig. 5. A single droplet could nucleate a companion hyp
bolic hedgehog@Fig. 5~a!#, or it could nucleate a disclination
ring of finite radius lying above or below the droplet@Fig.
5~b!# or encircling the droplet in a ‘‘Saturn-ring’’ configura
r
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tion @Fig. 5~c!#. Director configurations for many droplet
can be constructed from the single director configuratio
shown in Fig. 2. Other configurations in which the hedgeh
charge of water droplets is canceled by continuous textu
in the surrounding nematic rather than by the formation
point hedgehogs or singular disclination rings are possi
For example, if there are two droplets, the radial configu
tion around one droplet could continuously deform to a h
perbolic configuration passing through intermediate confi
rations such as the ‘‘circular’’ hedgehog of in Fig. 2~b!. The
final hyperbolic configuration could combine with the rad
configuration of the neighboring droplet to produce a co
figuration with zero charge but without any point defects
the nematic, as shown in Fig. 6~a!. Alternatively, there could
be a more symmetric configuration with a toroidal ‘‘escap
strength one’’ nontopological disclination line@53#, as
shown in Fig. 6~b!.

In the experiments of Poulin and co-workers@22,34#, the
dipole configuration shown in Fig. 5~a! is almost always ob-
served. When many droplets are in the cell, each dro
forms a dipole with a companion hyperbolic defect, so t
total charge of the multiple droplet system is zero, as
quired. Furthermore, the droplet dipoles align in chains p
allel to the cell-director as shown schematically in Fig. 7~see
also Figs. 8 and 9 of Ref.@34#!. Occasionally, droplet pairs
are observed to induce director configurations that canno
interpreted in terms of companion hedgehog defects@see Fig.
12 of Ref. @34##. These configurations may be of the typ
shown in Fig. 6~b!.

In multiple emulsions, water droplets are confined to t
interior of nematic drops with spherical symmetry. If th
outer surface of the nematic drop enforces homeotro
boundary conditions, then the total topological charge in
nematic drop is 1. If there are no water droplets in the ne

FIG. 5. Possible director configurations induced by a sin
spherical droplet with homeotropic boundary conditions in a ne
atic with total topological charge of zero.~a! Dipole configuration
with a companion hyperbolic hedgehog~indicated by an arrow!. ~b!
Dipole configuration with a companion hyperbolic disclination rin
~c! Quadrupolar Saturn-ring configuration with a disclination ri
encircling the water droplet at its equator. The direction of t
topological dipolep is shown in~a!.
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57 615TOPOLOGICAL DEFECTS AND INTERACTIONS IN . . .
atic drop, there must be a point hedgehog defect in the i
rior of the drop. In general, the radial hedgehog favored
homeotropic boundary conditions at the outer surface d
not have the lowest energy. Instead, there is an evolu
away from the radial configuration with distance from t
droplet surface@54,33#, as depicted in Fig. 8~a!. Under
crossed polarizers, this configuration will appear as a rota
cross. A single water droplet in the interior of the nema
drop will create a radial hedgehog. Since the total topolo
cal charge of the nematic drop is 1, no compensating def
must be created from the nematic. The configurations
forced at the water droplet surface and at the outer surfac
the nematic drop are both radial. As a result, the direc
adopts a radial configuration throughout the drop, as depi
in Fig. 8~b! ~see Fig. 13 of Ref.@34#!. Under crossed polar
izers, this configuration will appear as a rigid unrotat
cross. A second droplet added to a nematic drop create
additional interior radial hedgehog. In order to satisfy t
global boundary condition of charge 1, a hyperbolic defec
created out of the nematic. If there areN water droplets
inside a nematic drop,N21 hyperbolic defects will be cre

FIG. 6. Schematic representation of the nonsingular dire
configuration produced by two water droplets whose boundary c
ditions produce radial hedgehogs.~a! The radial hedgehog aroun
one droplet converts continuously to a hyperbolic configurat
which then combines with the radial configuration of the oth
droplet. ~b! The radial configuration around each droplet conve
smoothly to a toroidal ‘‘escaped strength-1’’ nontopological disc
nation that encircles the axis defined by the droplets. We are g
ful to R. B. Meyer for suggesting configuration~b! to us.

FIG. 7. Schematic representation of a chain of three water d
lets in a cell with parallel boundary conditions at infinity. Ea
droplet creates a companion hyperbolic hedgehog, and droplets
companions defects lie on a single line.
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ated. The droplets and defects form linear chains with
unpaired droplet as, shown in Fig. 9~see also Fig. 14 of Ref
@34#!. These chains~or the single water droplet if that is a
there is! are rigidly placed at the center of the nematic dro
let, and undergo no observable Brownian motion.

IV. CONFIGURATION AND ENERGY
OF SINGLE DROPLET

In Sec. III, we discussed possible director configuratio
induced by the presence of spherical water droplets with
meotropic boundary conditions in a nematic with paral
boundary conditions at infinity. Experiments show that t
water droplets create companion hyperbolic hedgeh
rather than disclination rings. In this section, our goal is
calculate the equilibrium separation of the droplet from
companion, and to compare the energy of the dipole confi
ration with that of the Saturn ring and intermediate config
rations depicted in Fig. 5. The calculational program is
principle quite simple: solve the Euler-Lagrange equatio
for the director arising from the minimization of the Fran
free energy@Eq. ~2!# subject to the normal boundary cond
tions at the surface of the water droplet and parallel bound
conditions at infinity. Unfortunately, the Euler-Lagrang
equations are highly nonlinear, and analytic solutions can
be found except for a few special geometries and bou
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FIG. 8. ~a! Schematic representation of the director configu
tion of a nematic drop with no interior water droplet. The director
forced by boundary conditions to have a radial configuration at
outer surface. As the distance from the surface increases, the d
tor seeks lower energy, nonradial configurations.~b! Schematic rep-
resentation of the director configuration of a nematic drop with
single interior water droplet. Homeotropic boundary conditions
the outer and water-droplet surfaces force a radial configura
everywhere.

FIG. 9. A nematic drop with three internal water droplets. T
three water droplets and their two companion hyperbolic defe
form a linear chain at the center of the nematic drop. The to
charge of this configuration is one.
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616 57LUBENSKY, PETTEY, CURRIER, AND STARK
ary conditions. We can, however, obtain analytic solutio
for the director far from the droplet. Using these solutio
and information, evident from Fig. 5, about the form of d
rector configurations near the droplet, we can constr
variational Ansätze for the director that obey all boundar
conditions and that have the desired defect structure. In
section, we will first discuss the nature of the far-field so
tions. We will then use two differentAnsätze to calculate
director configurations and their associated energies.
first Ansatzapplies only to the dipolar configuration. Th
second applies to all of the configurations in Fig. 5, and w
allow us to compare, for example, the energies of the dip
and Saturn-ring configurations.

A. Far-field solutions

The constraint of zero topological charge requiresn~r ! to
approachn05(0,0,1) asr→`. We assume thatn0 is along
the positivez axis. No physical results will change, howeve
if we reflectn0 to be along the negativez axis. At large but
not infinite r , the deviation ofn~r ! from n0 is small, and
n(r )'(nx ,ny ,1). Thus, at larger , we can replace the ful
nonlinear Frank free energy by the harmonic free energy

Fhar5
1
2 K (

m5x,y
E d3r ~“nm!2, ~11!

where we introduced the notationnm , m5x,y for the com-
ponents ofn perpendicular ton0 . The Euler-Lagrange equa
tions arising from this equation are simply Laplace eq
tions:

¹2nm50. ~12!

At large r the solutions to this equation can be expanded
multipoles:

nm5
Am

r
1

pm
•r

r 3 1
ci j

mr i r j

r 5 1••• . ~13!

The solutions we seek are invariant with respect to rotati
about thez axis, and have no azimuthal component ton ~i.e.,
no twist inn about thez axis!. This implies thatAm50, and
thatnx andny must be proportional, respectively, tox andy.
In addition, the dipolar part should change sign if the po
tion of the companion defect is shifted from above to bel
the droplet. The requirements are met by sett
pm5(p•n0)em and ci j

m5c(n0iej
m1ei

mn0 j ), whereei
m5d i

m is
the unit vector pointing in them5x,y direction. We identify
the vectorp as the dipole moment of the droplet-defect co
figuration, andp•n0 with its z component. Thus ifp changes
sign relative to n0 , the dipole contribution tonm also
changes sign. In the configurations we consider in this s
tion, p is aligned either parallel or antiparallel ton0 , so that
p•n056p wherep is the magnitude of the dipole momen
The parameterc, as we will show in more detail in Sec. V, i
the amplitude of the quadrupole moment tensorci j of the
droplet-defect combination. Thus we have

nx5pz

x

r 3 12c
zx

r 5 , ~14!
s
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ct
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ny5pz

y

r 3 12c
zy

r 5 .

By dimensional analysis,pz;a2 andc;a3, wherea is the
radius of the sphere. Equations~14! produce the far-field
configurations of Fig. 5~a! if we choosepz to be positive
when the companion hedgehog is below the droplet. Thus
adopt the convention that the dipole moment of the drop
and its companion defect points from the companion to
droplet.

The multipole expansion of Eqs.~13! and~14! eventually
breaks down because of nonlinearities neglected in Eq.~11!.
We can determine the leading corrections by including
leading anharmonic corrections to the harmonic free ene
Far from the defect, we can setn5(nx ,ny ,A12n'

2 )

'(nx ,ny ,12 1
2 n'

2 ), where n'
2 5nmnm . The leading anhar-

monic correction toFhar is then

Fan5
1
8 KE d3r ~“n'

2 !2, ~15!

and the Euler-Lagrange equations with this correction ar

¹2nm1 1
2 nm¹2n'

2 50. ~16!

Using this equation, one can show that if the leading con
bution tonm is dipolar, then the first correction tonm arising
from nonlinear terms is of the formr m /r 7. In other words
the multipole expansion of the Laplacian operator gives
correct larger behavior up to orderr 25. Thus we could in
principle develop variational approximations in which all
the multipole moments from order 2 to order 5 are var
tional parameters. We will content ourselves with allowi
only the dipole and quadrupole moments to vary.

B. Electric-field Ansatz

Any Ansatzfor n for the dipole configuration of Fig. 5~a!
must be normal to the water droplets atr 5a, tend ton0 as
r→`, and have a hyperbolic hedgehog at some posit
along thez axis outside of the water droplet. The familia
electrostatics problem of a charged conducting sphere in
external electric field can provide the basis for anAnsatzfor
n that satisfies all of these conditions. The electric fieldE is
normal to the conducting sphere, and it tends to a cons
E05E0ez as r→`. If the chargeQ on the sphere is large
enough, there is a point below the sphere at which
electric-field vanishes. The normalized electric field config
ration in the vicinity of this point is identical to that of a un
vector in the vicinity of a hyperbolic hedgehog. Thus w
have all of the ingredients we need for a variationalAnsatz.
We have merely to choose

n~r !5E~r !/uE~r !u. ~17!

The electric field for the above problem is

E~r !

E0
5ez1l2a2

r

r 3 2
a3

r 5 ~r 2ez23zr !, ~18!

wherel25Q/(E0a2) is a unitless measure of the strength
the electric field produced by the chargeQ compared to the
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57 617TOPOLOGICAL DEFECTS AND INTERACTIONS IN . . .
fixed external fieldE0 , and a is again the radius of the
sphere. The last term in this expression arises from an im
dipole at the center of the sphere that enforces the boun
condition thatE be normal to the surface of the sphere
r 5a. For l2.3, we find precisely one zero of the electr
field at r52z0ez outside the sphere, wherez0 is the appro-
priate solution to

uzu32uzul2a212a250. ~19!

~For l253, the point of the zero electric field just touch
the sphere, and forl2,3, a singular ring appears on th
surface of the sphere.! z0 is the distancer d from the droplet
center to its companion defect. At larger , n~r ! becomes

nm5~la!2
r m

r 3 13a3
zrm

r 5 ~20!

in agreement with Eq.~14!. Thus the dipole moment isl2a2,
and the quadrupole moment is 3a3/2. The variablel is a
variational parameter that determines both the position of
hyperbolic defect and the magnitude of the dipole mome
The Ansatzfixes the quadrupole moment independent of
value of l, and constrains the dipole moment to be grea
than 3a2. A natural energy scale isU05pKa/2. The re-
duced energyU/U0 calculated from Eqs.~17!, ~18!, and~1!
is plotted as a function of the distance between the sph
and the companion defect in Fig. 10. The energy at the m
mum of the curve isU59.00U0 . At this minimum, the other
parameters characterizing the droplet-defect pair
z051.19a, pz53.02a2, andc53a2/2.

Of course we have noa priori reason to expect a norma
ized electric field to yield the true minimum energy config
ration for this problem. By modifying our chosenE~r ! to be
a slightly more general vector field, and by no longer ins
ing that it be a true electric field, we may hope to impro
our Ansatzand to relax the constraints put uponpz and c.
We introduce below one such generalization that provide
significant improvement: U57.87U0 , z051.26a,
pz52.20a2, and c521.09a3. In particular, we note here
that the sign ofc is the opposite of what we had previous
constrained it to be through our electric-fieldAnsatz.

We now present the generalization of the electric-fi
AnsatzE~r ! in Eq. ~18! used to calculate the results discuss
above, and mention a few of the important properties it p
sesses. We insist that the generalization maintain the co
far-field behavior to quadrupole order, so that we can id
tify the quadrupole strengthc as well as the dipole

FIG. 10. Energy~in units of U05pKa/2! of the droplet dipole
as a function of the distance~in units of the droplet radiusa! from
the droplet center to the companion hedgehog.
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strengthpz . We would also like the generalization to pu
fewer constraints on the allowed values ofpz andc. In par-
ticular, since in certain situations the sign ofc seems to be an
important quantity, we should certainly not restrictc to be of
a particular sign in theAnsatz. Rewriting Eq.~18! as

E~r !

E0
5S 12

a3

r 3 Dez1l2a2
r

r 3 1
3za3

r 5 r ~21!

motivates the following generalization containing the afo
mentioned desired properties:

E~r !

E0
5S 12

ak1

r k1 Dez1l2a2
r

r 3 1S b1a3

r 5 1
b2ak2

r k212 D zr .

~22!

As before,pz5l2a2 and nowc5b1a3/2, provided that in
carrying out the minimization over the appropriate free p
rameters we findk1 andk2 are both greater than 3~if this had
not been the case then the far-field behavior would not h
been correct!. Minimizing, we find an energy considerabl
lower than that found using Eq.~18!. We obtain the results
for U, z0 , pz and C given above. In addition, we find
k154.88, k253.73, andb254.27.

C. Second dipoleAnsatz

To study the transition from a dipole to a Saturn ring a
to establish that the dipole has a lower energy than the Sa
ring, we need anAnsatzthat allows disclination rings and
limiting hyperbolic hedgehog. To construct ourAnsatzwe
use appropriately symmetric solutions to a related tw
dimensional~2D! problem and modify their far-field behav
ior to match the required 3D far-field behavior~following a
route analogous to that in Refs.@35, 36# for the case of the
equatorial ring!.

To make contact with 2D configurations, it is convenie
to look at the general problem via the following paramet
zation:

n5„sin Q~r !cosF~r !,sin Q~r !sin F~r !,cosQ~r !…
~23!

r5~rsin u cosf,r sin u sin f,r cosu!,

where we have expressedr in the usual spherical coordi
nates. The full Euler-Lagrange equations inQ andF arising
from the free energy of Eq.~2! are simply

¹2Q2sin Q cosQ~¹F•¹F!50,

sin Q¹2F12 cosQ~¹Q•¹F!50.

The nonlinearity of the above coupled partial different
equations make closed-form solutions difficult to obta
though we note here for completeness thatQ5u, F5f is
indeed a solution~the radial hedgehog!, and thus that solu-
tions are not impossible to find.

Turning now to the problem at hand, we should certain
impose the condition of azimuthal symmetry, name
]fQ50, ]fF51, and Quu50,p is either 0 orp. We will
impose a more stringent constraint onF, namely thatF5f,
which allows us to use our knowledge of 2D nematic co
figurations to construct 3D azimuthally symmetric config
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618 57LUBENSKY, PETTEY, CURRIER, AND STARK
rations~this more stringent condition was also satisfied in
electric-fieldAnsatz!. This leaves us with the single Eule
Lagrange equation

¹2Q2
sin 2Q

2r 2 sin2 u
50, ~24!

whose nonlinearity still makes solutions difficult to obtai
Using now that we wantn→(0,0,1) ~or Q→0! asr→`, we
can linearize Eq.~24! and find the form of the far-field solu
tions,

Q→(
k51

`
Ak

r k11 Pk
1~cosu!5A1

sin u

r 2 1A2

3 sin 2u

2r 3 1•••

[pz

sin u

r 2 1c
sin 2u

r 3 1••• , ~25!

where the last line definespz andc to match the definitions
of these quantities in Eq.~14!, as one can check by subst
tuting this form forQ into Eq. ~23!.

Given the restriction,F5f, we note that in thex-z plane
we have

n2D5~sin Q,cosQ!. ~26!

For n2D , we have a wealth of information about how
construct solutions for the harmonic free energy,

F2D5 1
2 KE d2r ~¹2DQ!2. ~27!

It would be nice if our problem reduced to this linear pro
lem. However, even though this is not the case we can
exploit our knowledge of the 2D solutions to constructAn-
satz solutions for the 3D problem. The procedure is qu
simple and has at least some promising motivations. A
configuration ofn2D that is invariant underx→2x can be
converted to a 3D configuration by spinning about thez axis
to produce

n5~sin Q cosf,sin Q sin f,cosQ!, ~28!

a solution with theF5f constraint.
Furthermore we note that the canonicalq2D511 defect

on thez axis becomes aq51 radial hedgehog in three d
mensions, and the canonicalq2D521 defect on thez axis
becomes aq51 hyperbolic hedgehog in three dimensio
~recall that in two dimensions the charges of nematic defe
are signed, and their composition law is addition!. Also, any
symmetric pair~we need a pair to maintain the required r
flection symmetry about thez axis! of q2D56 1

2 defects off
the z axis, when spun into a 3D configuration, become
strength1

2-disclination ring. Finally, we note that satisfyin
the 3D boundary condition~BC! on the sphere, namely tha
n5er on the sphere, simply requires satisfying normal BC
on the circle in two dimensions. In two dimensions, we c
satisfy these BC’s using the method of images, which wo
because of the linearity of the Euler-Lagrange~EL! equa-
tions.

Before writing down the ansatz we note that the 2D co
figuration Q5uz0

, where uz0
is the polar angle measure
e

ill

y

ts

a

s
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s

-

with respect to the pointz0 on thez axis, when made into a
3D configuration indeed satisfies the 3D EL equations.
two dimensions,Q11Q2 is a solution to the EL equation
provided bothQ1 andQ2 are. However, because the 3D E
equations are nonlinear,Q11Q2 is in general not a solution
to the 3D El equations even ifQ1 andQ2 individually are. It
is this fact that prevents our ansatz configurations from be
true solutions to the 3D equations.

We now construct ourAnsatzfor a sphere at the origin
with a compensating unit strength hyperbolic hedgehog.
keep equations as simple as possible, we use units in w
the sphere radius is 1. As discussed above, we first cons
a solution to the two-dimensional problem. This is done
ing the fact that a defect of strengthq at position
r2D5(x0 ,z0) is described by the field
Q5q tan21@(z2z0)/(x2x0)#. Boundary conditions at the
sphere’s surface and at infinity can be met by placing
strengthq512 defect at the sphere’s center, a21 defect at
position (0,2r d) for arbitrary r d , and an image21 defect
inside the spheres at (0,r d

21) as shown in Fig. 11~a!. This
leads to

Q052u2tan21
r sin u

r cosu1r d
2tan21

rr d sin u

rr d cosu11
,

~29!

where we have taken the radius of the sphere to be 1, anr d
is the distance from the defect below the sphere to the ori
While this does have the correct form near the defect
z52r d it does not have the correct far field form for the 3
problem. In fact,

Q0'S r d1
1

r d
D sin u

r
2S r d

21
1

r d
2D sin u cosu

r 2 1••• ,

~30!

which does not agree with Eq.~25!. However, we note tha
to the order shown, it differs only by an overall power ofr 21

FIG. 11. Utilizing the method of images we are able to constr
solutions for the related 2D problem of a nematic with homeotro
boundary conditions at infinity and with normal boundary con
tions on a circle about the origin. These configurations are t
extended to 3D configurations by spinning them about their vert
symmetry axis, where the singularity along the vertical axis beco
singularities in three dimensions~possibly removable ones as in th
case of the12 defect at the origin! and the symmetric pairs o
defects off the axis become singular defect rings. Note that in
calculations we are not really concerned with the from of the fi
inside the circle since the nematic is only present in the exterior,
field is merely drawn here to elucidate the origin of the ansatz us
~a! A hyperbolic defect beneath the sphere.~b! A non-equatorial
disclination ring.~c! An equatorial disclination ring.
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57 619TOPOLOGICAL DEFECTS AND INTERACTIONS IN . . .
~this is not true for the higher order terms not shown!. So, we
alter Q0 in the following way, taking care to preserve th
BC’s at r 51:

Q52u2tan21
r sin u

r cosu1r d
2tan21

rr d sin u

rr d cosu11

1e2k/r 3F S r d1
1

r d
D S 2

1

r
1

1

r 2D sin u1
1

2 S r d
21

1

r d
2D

3S 1

r 2 2
1

r 3D sin 2u1
1

3 S r d
31

1

r d
3D S 2

1

r 3 1
1

r 4D
3sin u~4 cos2 u21!G , ~31!

which now has the far-field form

Q'S r d1
1

r d
D sin u

r 2 2
1

2 S 1

r d
2 1r d

2D sin 2u

r 3 . ~32!

This agrees with Eq. ~25! with pz5r d1r d
21 and

c52(r d
21r d

22)/2, which, contrary to the electric-fieldAn-

satz is negative~recall a51!. The factore2k/r 3
, introduced

for numerical convenience, tends to 1 at larger and to a
value near the sphere controlled by the variational param
k. Substituting this form@Eq. ~31!# for Q ~andF5f! in Eq.
~2! and minimizing overr d and k ~numerically!, we find
k50.32 andr d51.22.
n
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Now taking the sphere to have a radius ofa, as in the
electric-fieldAnsatz, we find pz52.04a2, c521.08a3, and
U57.84U0 in very good agreement with the results obtain
from the generalized electric-fieldAnsatz. In addition
r d51.22a agrees nicely with the corresponding quant
z051.26a obtained from the electric electric-fieldAnsatz.
Preliminary results obtained via numerical solution to t
full Euler-Lagrange equations for this problem are in exc
lent agreement with theseAnsatzresults@55#.

D. From dipole to Saturn ring

We can easily generalize the angular parametrization
point defect just discussed to describe an annular ring de
with a varying opening angleud @Fig. 11~b!#, and thereby
study the transition from a dipole configuration wthud5p to
the Saturn ring withud5p/2 @Fig. 11~c!#. We proceed ex-
actly as in the point-defect case. We place one strength12
defect at the center of the circle, two strength2 1

2 defects at
r2D5r d(6sinud ,cosud), and two strength2 1

2 images inside
the sphere atr2D5r d

21(6sinud ,cosud). This gives a solu-
tion to the 2D problem with two strength2 1

2 defects outside
the circle. When promoted to 3D, this solution correctly s
isfies homeotropic boundary conditions at the surface of
sphere, and it yields a strength1

2 disclination ring outside the
sphere with an opening angle ofud . It fails, however to
produce the correct far-field form forn. We add terms simi-
lar to those of the preceding calculation to correct this d
ciency to produce
Q52u2
1

2 F tan21
r sin u2r d sin ud

r cosu2r d cosud
1tan21

r sin u1r d sin ud

r cosu2r d cosud
1tan21

rr d sin u2sinud

rr d cosu2cosud
1tan21

rr d sin u1sin ud

rr d cosu2cosud
G

1e2k/r 3F S r d1
1

r d
D S 1

r
2

1

r 2D cosudsin u1S r d
21

1

r d
2D S 1

r 2 2
1

r 3D ~2112 cos2 ud!sin u cosu

1
1

3 S r d
31

1

r d
3D S 1

r 3 2
1

r 4D cosud~4 cos2 ud23!sin u~4 cos2 u21!G . ~33!
. As
ere,

hat
ta-
The director configuration in the vicinity of the disclinatio
ring is singular, and the above form breaks down at distan
from the disclination ring less than the core radiusr c . The
equatorial ring configuration,ud5p/2 has been investigate
previously@35,36#.

Figure 12 shows the energyU in units ofU05pKa/2 for
various values ofud obtained by minimizing the free energ
@Eq. ~2!#, augmented by an additional core ener
pr dK sinud/2, over the variational parametersr d and k in
the Ansatz function Eq. ~33!. The reduced core radius i
these calculations was chosen to ber c51023. We have
checked that our results are insensitive to the value ofr c for
1024,r c,1022. However, as we investigate larger co
sizes, we find that the local maximum in the energy in F
12 begins to shift towards largerud until r c'0.05, at which
point, ud5p/2 appears to become the global minimum. Th
suggests that there may be a first-order transition from
es

.

e

hedgehog to the Saturn ring as a function of the core size
the core size increases, the cores sit closer to the sph

FIG. 12. Energy vs angular position of the defect ring. Note t
the equatorial ring (ud5 p/2) does appear to enjoy some metas
bility but that the collapsed ring~or effectively the point defect,
u5p! is of much lower energy.
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620 57LUBENSKY, PETTEY, CURRIER, AND STARK
creating difficulties in our numerical integrations. As a r
sult, we have not investigated cores sizes considerably la
thanr c50.05. One of us@55# is undertaking numerical simu
lations to study this behavior further. Since a typical rad
of 10 nm will satisfy 1024, r c,1022 for a reduced core
radius corresponding to particles with radii as small as 1mm,
our results do indicate that the point hedgehog should be
preferred configuration in the range of particle size of int
est. Figure 13 shows the equilibrium distance of the r
from the center of the sphere for 1024,r c,1022. We note
that r d and E for ud'p agree quite well with the value
obtained from the point-defectAnsatzpreviously presented
That is, thisAnsatzdoes collapse down to the point defect
a nice manner. However, we must also note that
ud5 p/2, the equatorial ring, ourr d51.08a is somewhat dif-
ferent from the value of 1.25a found by Terentjev and co
workers@35,36#.

Further comments about the ring configuration are in
der. Recalling that in three dimensions the point-defect s
gularities represent integrable singularities whereas the
defects do not, one might naively expect that rings sho
always collapse into points. As discussed in Sec. II C, ho
ever, this is not always the case. Even an isolated point
gularity might have higher energy than an isolated ring s
gularity @49,35,50#. But it is worth noting that in such
circumstances the equilibrium radius of such rings turns
to be quite small ('0.2 mm). Thus here we would naively
expect that if a ring configuration were to exist it wou
probably not be an equatorial ring configuration. This prov
to be correct, as we see in Fig. 12. Though the equatorial
does appear to enjoy some metastability, its energy is c
siderably higher than that of the point defect below t
sphere.

E. Thermal stability

We have seen so far that the point defect beneath
sphere is the energetically favorable configuration. The e
tic constantk for deviationsDz from equilibrium separation
z0 is simply the curvature of the energy-versus-separa
curve @e.g., Fig. 10#. The dipoleAnsatzyields k533pK/a.
The otherAnsatzesyield similar values. Thus

K S Dz

z0
D 2L 5

kBT

kz0
2 '1025, ~34!

where the final numerical estimate follows fro

FIG. 13. The preferred distance from the origin of the disclin
tion ring as a function of its angular position.
-
er

s

he
-
g

r

-
-
g

ld
-
n-
-

t

s
g

n-
e

he
s-

n

kBT'10213 erg, K'1026 dyn, anda51 mm. These fluc-
tuations in the length of the topological dipole are unobse
ably small.

We have argued that the topological dipole prefers
align parallel or antiparallel to the director at infinity. W
will now show that the angular restoring force constantku is
greater thanpKa, so that

^~Du!2&,
kBT

pKa
'331024. ~35!

Thus, though of order 30 times greater than fluctuations
the length of the dipole, angular fluctuations are still sm
enough to be difficult to observe. Interestingly, we note t
angular fluctuations in the 2D version of this problem a
much larger, and have indeed been observed in free stan
smectic films@39#

Our approach is to provide anAnsatzfor a director con-
figuration with the dipole rotated through an angleDu rela-
tive to the director field at infinity given a configuration i
which the dipole moment is parallel to the director field
infinity. We will then use thisAnsatzto obtain a bound on
ku . We start with an aligned dipole configuration withn
expressed in polar coordinates according to Eq.~23!. We
then construct a rotated configuration,n8, by slowly rotating
n about they axis as we progress radially outward:

nx85sin Q cosF cos f 1cosQ sin f ,

ny85sin Q sin F, ~36!

nz85cosQ cos f 2sin Q cosF sin f ,

where the amount we rotate at each point is given by
function f (r ) which must satisfy the boundary conditions

f ~r 5a!50,
~37!

f ~r 5R!5Du.

Du denotes the tilt angle of the dipole with respect to the
field, a the droplet radius, andR the system size. To see tha
Du is the stated tilt angle we note that the far field ofn8
makes an angleDu with the z axis, and, furthermore, the
transformation ofn to n8 does not change the position of th
singularity, or of the droplet itself. Thus, the droplet-defe
dipole ~p! is still aligned with thez axis.

We denoteF(Du) as the free energy of the tilted dipol
configuration and, accordingly, refer toF(0) as the free en-
ergy of the aligned configuration. Using Eq.~2!, we find

F~Du!2F~0!5 1
2 KE d3r ~12sin2 F cos2 Q!“ f •“ f ,

~38!

where we have eliminated terms linear inf using the sym-
metryF(Du)5F(2Du). The original unrotated solutions o
interest to us haveF5f. By expandingf in a Fourier series
in cosnf and sinnf, we can show that

*df sin2 f“f•“f,1
4*df“f•“f. Then, using sin2 Q,1, we

obtain

-
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F~Du!2F~0!. 1
8 KE d3r“ f •“ f . ~39!

The right hand side of this equation is at a minimum wh
¹2f 50 subject to the boundary conditions of Eq.~37!, i.e.,
when

f 5Du
12~a/r !

12~a/R!
. ~40!

As required,f does not depend onF. Using this f in Eq.
~39!, we obtain

F~Du!2F~0!. 1
2 pK~Du!2a ~41!

for R@a, implying ku.pKa.

F. Optical images

In the experiments reported by Poulinet al. @22#, only the
dipole and not the Saturn-ring configuration shown in Fig
is observed. Figure 14~a! presents an experimentally ob
tained image of a single water droplet under crossed po
izers, with one polarizer parallel to the dipole axis. In t
region of the droplet we see a pronounced pattern aris
from the spatially varying director field. In Fig. 14~b! we
show an image of a similar single droplet calculated us
the Jones matrix formalism@26# and neglecting any refrac
tion at the droplet boundary. The similarity of the two im
ages is obvious, and clearly confirms the occurrence of
dipole configuration. Both pictures show two bright win
left of the droplet. In the calculated picture they are mu
more extended than they are in the experimental picture.
theoretical picture was calculated using the simple elect
field Ansatz. The more sophisticatedAnsatzesreduce the re-
gion around the defect where there is rapid variation of
director. They would yield images in closer agreement w
the experimentally observed one.

V. PHENOMENOLOGICAL THEORY
AND DROPLET-DROPLET INTERACTIONS

To understand the properties of multidroplet emulsio
we need to determine the nature of droplet-droplet inter
tions. These interactions are mediated by the nematic
which they are embedded and are in general quite com
cated. Because interactions are determined by distortion
the director field, there are multibody as well as two-bo
interactions. We will content ourselves with calculations
some properties of the effective two-body interaction.
calculate the position-dependent interaction potential
tween two droplets, we should solve the Euler-Lagran
equations, as a function of droplet separation, subject to
boundary condition that the director be normal to each dr
let. Solving these nonlinear equations completely in the p
ence of two droplets is even more complicated than solv
them with one droplet, and again we must resort to appro
mations. Fortunately, interactions at large separations are
termined entirely by the far-field distortions and the mu
pole moments of the individual droplet-defect pairs, and th
can be described by a phenomenological free energy, w
we will derive in this section.
n
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In Sec. II, we established that each water droplet creat
hyperbolic hedgehog to which it binds tightly to create
stable topological dipole. The original droplet is described
three translational degrees of freedom. Out of the nemat
draws a hedgehog, which itself has three translational
grees of freedom. The two combine to produce a dipole w
six degrees of freedom, which can be parametrized by th
variables specifying the position of the water droplet, tw
angles specifying the orientation of the dipole, and one v

FIG. 14. ~a! Image of a single droplet with its companion defe
as observed under crossed polarizers obtained by P. Poulin~b!
Simulated image of the same configuration using the Jones m
formalism. The two images are very similar.
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able specifying the magnitude of the dipole. As we ha
seen, the magnitude of the dipole does not fluctuate m
and can be regarded as a constant. The direction of the d
is also fairly strongly constrained. It can, however, devi
from the direction of local preferred orientation~parallel to a
local director to be defined in more detail below! when there
are many droplets present. The droplet-defect pair is in
dition characterized by its higher multipole moments. T
direction of the principal axes of these moments is speci
by the direction of the dipole as long as director configu
tions remain uniaxial. The magnitudes of the uniaxial m
ments like the magnitude of the dipole moment are energ
cally fixed. When director configurations are not uniaxi
multipole tensors will develop additional components, wh
we will not consider here. We can thus parametrize drop
dipoles by their position and orientation and a set of mu
pole moments, which we regard as fixed. Letea be the unit
vector specifying the direction of the dipole moment asso
ated with dropleta. Its dipole and quadrupole moments a

then pa5pea and ci j
a 5c(ei

aej
a2 1

3 d i j ), wherep and c are
the magnitudes of the dipole and quadrupole moments
culated in Sec. IV. We can now introduce dipole- a
quadrupole-moment densitiesP~r ! and Ci j (r ) in the usual
way. Let ra denote the position of dropleta, then

P~r !5(
a

pad~r2ra!,

~42!

Ci j ~r !5(
a

ci j
a d~r2ra!.

We now construct an effective free energy for director a
droplets valid at length scales large compared to droplet
mensions. At these length scales, we can regard the dro
as point objects~as implied by the definitions of the densitie
given above!. At each point in space, there is a local direc
n~r ! along which the droplet dipoles wish to align. In th
more microscopic picture, of course, the direction of t
local director corresponds to the far-field directorn0 . The
effective free energy is constructed from rotationally inva
ant combinations ofPi , Ci j , ni , and the gradient operato
¹ i that are also even undern→2n. It can be expressed as
sum of terms

F5Fn1Fp1FC1Falign, ~43!

whereFn is the Frank free energy,Fp describes interaction
betweenP andn, FC describes interactions betweenCi j and
n involving gradient operators, and

Falign52DE d3r Ci j ~r !ni~r !nj~r !

52DQ(
a

@„ea
•n~ra!…22 1

3 # ~44!

describes the alignment of the axesea along the local direc-
tor n(ra). The leading contribution toFp is identical to that
for electric dipoles in a nematic@23,56#,
e
ch
ole
e

d-
e
d
-
-
ti-
,

t
-

i-

l-

d
i-
ets

r

-

Fp54pKE d3@2P•n~“•n!1bP•~n3“3n!#, ~45!

where b is a material-dependent unitless parameter. T
leading contribution toFC is

FC54pKE d3r @~“•n!n•“~niCi j nj !

1“~niCi j nj !•~n3“3n!#. ~46!

There should also be terms inFC like Ci j ¹kni¹knj . These
terms can be shown to make contributions to the effec
droplet-droplet interaction that are higher order in separa
than those arising from Eq.~46!. Equation~46! is identical to
that introduced in Ref.@37# to discuss interactions betwee
Saturn-ring droplets, providedniCi j nj is replaced by a scala
densityr(r )5(ad(r2ra). The two energies are absolute
equivalent to leading order in the componentsnm of n per-
pendicular ton0 , provided allea are restricted to be paralle
to n0 . When this restriction onea is lifted, and to higher
order innm , the two theories differ. In our opinion, the sca
lar variable cannot strictly speaking be used, because e
droplet carries with it an anisotropic director environme
even when the dipole moment is zero.

Since P prefers to align along the local directorn, the
dipole-bend coupling term in Eq.~45! can be neglected to
leading order in deviations of the director from uniformit
The2P•n(“•n) term in Eq.~45! shows that dipoles aligned
alongn create local splay, as is evident from the dipole co
figuration depicted in Fig. 5~a!. In addition, this term says
that dipoles can lower their energy by migrating to regions
maximum splay while remaining aligned with the local d
rector. Experiments@22,34# support this conclusion. Wate
droplets in a nematic drop with homeotropic boundary co
ditions at its surface congregate at the center of the nem
drop, where the splay is a maximum. Boundary conditions
the outer surface of nematic drops can be changed from
meotropic to tangential by adding a small amount of glyce
to the continuous water phase. In the passage from hom
tropic to tangential boundary conditions, the topologic
charge of the nematic drop changes from 1 to zero, and p
defects called boojums@30,25,31# form on the drop’s sur-
face. The director splay is a maximum in the drop’s inter
near the boojums. Water droplets move from the drop c
ters to drop surfaces near boojums as the boundary co
tions are changed. The final configuration of two droplets
a nematic drop with tangential boundary conditions is sho
in Fig. 15.

To harmonic order innm , the full effective free energy is

F5KE d3r @ 1
2 ~“nm!224pPz]mnm14p~]zCzz!]mnm#.

~47!

The dipole-bend coupling term of Eq.~45! does not contrib-
ute becauseP is aligned along the far-field director. Thus

¹2nm54p]m@Pz~r !2]zCzz~r !# ~48!

or
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nm~r !52E d3r 8
1

ur2r 8u
]m8 @Pz~r 8!2]z8Czz~r 8!#. ~49!

For a single droplet at the origin withe5n0 , Pz(r )5pzd(r )

(pz56p), and Czz(r )5 2
3 cd(r ), and the above equatio

yields exactly Eq.~14!.
Droplets create far-field distortions of the director, whi

to leading order at large distances are determined by
~48!, that interact with the director fields of other drople
This leads to an effective droplet-droplet interaction that c
be expressed to leading order as pairwise interactions
tween dipole and quadrupole densities. Using Eq.~49! in Eq.
~47!, we obtain

F

4pK
5

1

2 E d3r d3r 8@Pz~r !VPP~r2r 8!Pz~r 8!

1Czz~r !VCC~r2r 8!Czz~r 8!1VPC~r2r 8!

3@Czz~r !Pz~r 8!2Pz~r !Czz~r 8!#, ~50!

where

VPP~r !5]m]m

1

r
5

1

r 3 ~123 cos3 u!,

VCC~r !52]z
2]m]m

1

r
5

1

r 5 ~9290 cos2 u1105 cos4 u!,

~51!

VPC~r !5]z]m]m

1

r
5

cosu

r 4 ~15 cos2 u29!,

whereu is the angle the separation vectorr makes withn0 .
The interaction energy between droplets at positionsr andr 8
with respective dipole and quadrupole momentspz , pz8 , c,
andc8 is thus

FIG. 15. Schematic representation of two water droplets w
homeotropic boundary conditions at their outer surfaces in a n
atic drop with tangential boundary conditions at its outer surfa
The total hedgehog charge is zero, so there is one hyperbolic he
hog per droplet. The water droplets migrate to the region of ma
mum splay near a surface boojum. The splay near the booju
assumed to be sufficiently strong that both dipoles ‘‘prefer’’ to
near the boojum rather than to form a chain.
q.
.
n
e-

U~R!54pKFpzpz8VPP~R!1
4

9
cc8VCC~R!

3
2

3
~cpz82c8pz!VPC~R!G . ~52!

This potential can be used to calculate the force between
droplets as a function of their separation. Consider, for
ample, the interaction between two droplets labeled 1 an
with respective radiia1 and a2 . For simplicity, assume the
dipoles associated with each droplet are aligned along
positivez axis, and that the center of droplet 1 is at the orig
and that of droplet 2 atr5(0,0,R) a distanceR away along
the positivez axis as shown in Fig. 16. The dipole and qua
rupole moments scale respectively asa2 anda3, and we can
write pz5aa2 andc523ba3/2. The dipoleAnsatzsolution

of Sec. IV C, predictsa52.04, andb5 2
331.0850.72. The

force between two droplets is then

F

4pK
52a2a1

2a2
2 6

R4 1b2a1
3a2

3 120

R6 2aba1
2a2

2~a12a2!
24

R5 .

~53!

The dominant force is the attractive dipole-dipole force p
portional toR24. Recent experiments confirm this relatio
@57#. Interestingly the sign of the dipole-quadrupole forc
which dies off asR25, vanishes for particles of equal radiu
When the particles have unequal radii, the sign of this fo
depends on the relative position of the large and small p
ticle. If a1,a2 , it is repulsive~for b.0); if a1.a2 , it is
attractive, i.e., it is repulsive if the smaller ball is to the rig
~positivez! of the large ball, and attractive if it is to the le
~negativez!.

VI. SUMMARY AND CONCLUSIONS

Inverse nematic emulsions in which surfactant-coated
ter droplets are dispersed in a nematic host have prope
that are distinct from those found in colloids, emulsions
two isotropic fluids, and emulsions of nematic droplets in
isotropic fluid. The water droplets in these emulsions exh
anisotropic interactions that are repulsive at short range
attractive at long range. The short-range repulsive interac
prevents coalescence of droplets and leads to long-term

h
-
.

ge-
i-
is

FIG. 16. ~a! Configuration in which the large particle is to th
right of the small particle.~b! The inverse configuration. The forc
between the two particles is more attractive in case~a! than in case
~b!. In both cases, the particle to the left is labeled 1, and that to
right 2.
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bility, which can be eliminated by heating into the isotrop
phase. The long-range attractive force is dipolar and fav
chaining of droplets.

In this paper, we have presented a detailed theore
study of droplets and droplet interactions in inverse nem
emulsions. Homeotropic boundary conditions at droplet s
faces produce a hedgehog director configuration around
droplet. Constraints on the global topological charge fo
the nucleation of compensating topological defects out of
nematic host. The compensating defect associated wi
single droplet in a cell with a parallel aligned director
infinity can be a point hedgehog or a disclination ring sitti
above or below the droplet or encircling its equator in t
Saturn-ring configuration as shown in Fig. 5. Using vario
variational ansatzes, we showed that in the lowest ene
configuration, a single water droplet pulls a single po
hedgehog from the nematic to form a tightly bound dipo
Then, using a phenomenological model in which the to
logical dipoles are coupled to the nematic director via
flexoelectric interaction, we derived the effective long-ran
dipolar interaction between water droplets. We also con
ered quadrupolar corrections to the dominant dipolar inte
tion. The phenomenological model also predicts the exp
mentally observed tendency of dipoles to seek regions
high splay.

We have focused mostly on interactions between drop
in cells with parallel boundary conditions at infinity wit
total topological charge zero. Multiple emulsions in whi
water droplets are dispersed in nematic drops, which ar
turn dispersed in water, have made possible the isolation
finite number of droplets and facilitated a number of expe
mental observations. The nematic drops are characterize
-

r

a

rs

al
ic
r-
ch
e
e
a

e
s
gy
t
.
-

a
e
-

c-
i-
of

ts

in
f a
-
by

a topological charge of 1 rather than zero, and by spati
nonuniform director configurations. Many of the properti
of these droplets-within-drops systems such as chaining
the tendency of the water droplets to concentrate near
center of the nematic drop are explained by the analyse
this paper. Numerically accurate predictions about these
tems, however, require, global minimization procedures t
can only be done numerically. Numerical algorithms to stu
droplets dispersed in confined geometries are currently un
development@55#.

Inverse nematic emulsions are a relatively new addition
the ever growing list of interesting soft materials, and th
offer the hope of new and surprising properties. We are c
rently investigating among other things the dynamics
droplets in inverse emulsions and inverse emulsions of w
droplets in cholesteric rather than nematic liquid crystals
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