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Topological defects and interactions in nematic emulsions
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Inverse nematic emulsions, in which surfactant-coated water droplets are dispersed in a nematic host fluid,
have distinctive properties that set them apart from dispersions of two isotropic fluids or of nematic droplets in
an isotropic fluid. We present a comprehensive theoretical study of the distortions produced in the nematic host
by the dispersed droplets and of solvent-mediated dipolar interactions between droplets that lead to their
experimentally observed chaining. A single droplet in a nematic host acts like a macroscopic hedgehog defect.
Global boundary conditions force the nucleation of compensating topological defects in the nematic host.
Using variational techniques, we show that in the lowest energy configuration, a single water droplet draws a
single hedgehog out of the nematic host to form a tightly bound dipole. Configurations in which the water
droplet is encircled by a disclination ring have higher energy. The droplet dipole induces distortions in the
nematic host that lead to an effective dipole-dipole interaction between droplets, and hence to chaining.
[S1063-651%98)07601-4

PACS numbgs): 61.30.Jf, 77.84.Nh, 61.30.Cz

I. INTRODUCTION containing a liquid-crystalline material are dispersed in water
have been a particularly fruitful medium for studying topo-
Topological defect§1—-4], which are a necessary conse- logical defectg23-26,10. The liquid-crystalline drops are
guence of broken continuous symmetry, exist in systems atypically from 10 to 50um in diameter, and are visible under
disparate as superfluid helium[3] and 4[6], crystalline a microscope. Changes in alignment direction, specified by
solids[7-9], liquid crystals[10,11], and quantum Hall fluids the Frank directon, are easily studied under crossed polar-
[12]. They play an important if not determining role in such izers. The isolated drops in these emulsions provide an ide-
phenomena as response to external strg$s6k the nature alized spherical confining geometry for the liquid crystal.
of phase transitiong4,13,14, or the approach to equilibrium More general distorted or multiply connected random geom-
after a quench into an ordered phd4é]; and they are the etries[26] such as those produced in polymer-dispersed lig-
primary ingredient in such phases of matter as the Abrikosowid crystals[27,28, in emulsion films, or in dispersions of
flux-lattice phase of superconductdrs6,17] or the twist- agglomerations of silica spheres in a nematic 28t are of
grain-boundary phase of liquid crystdls8—20. They even considerable current interest because of display technologies
arise in certain cosmological mod¢R1]. Given the univer- based upon changing the light scattering properties of these
sal nature of topological defects, it is always interesting tosystems through modification of defect distributions via ex-
find new systems that allow us to increase our understandinggrnal fields.
of these defects. In this paper, we will present a detailed In this paper, we will study inverse and multiple nematic
theoretical investigation of a new class of nematic emulsiongmulsions. These emulsions differ from the direct emulsions
[22] whose intriguing properties are controlled by a class ofdescribed above, in that isotropic water droplets are dis-
topological defects called hedgehogs. These emulsions apersed in a nematic host rather than the other way around.
either simple inverse emulsions in which surfactant-coatedhey are considerably more complex than direct emulsions.
water droplets are dispersed in an aligned nematic host, dn direct emulsions, the nematic is separated into distinct,
they are multiple emulsions in which water droplets are dishearly spherical drops. Normal or homeotropic boundary
persed in larger nematic drops that in turn are dispersed inonditions on the nematic director at a drop’s surface will
water. lead to a single point hedgehog defect in its interior; tangen-
Liquid crystals are ideal materials for studying topologi- tial boundary conditions will lead to a pair of surface defects
cal defects. Distortions yielding defects are easily producedalled boojumd30,25,31. Though there can be transitions
through control of boundary conditions, surface geometriesamong various director configurations as temperature or
and external fields. The resulting defects are easily imagedoundary conditions are chang¢#@2,33, the topological
optically. The many different liquid crystalline phaseem-  structure of these drops is simple. In inverse emulsions, each
atic, cholesteric, smectid; smecticC, etc) with different  water drop with homeotropic boundary conditions will create
symmetry ground states make it possible to study different hedgehog director configuration in its immediate vicinity.
kinds of defects. Over the years, liquid crystals have proGlobal boundary conditions at the surface of the nematic
vided us with detailed and visually striking information restrict total topological charge. Thus, in order to satisfy glo-
about topological defects. bal constraints, additional defects must be created out of the
Liquid crystal emulsions in which surfactant-coated dropsnematic to compensate for or to cancel the topological
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charge created by droplets. The nature and placement @f,.V.(nV.n) [41,42, which we will not consider in this
these additional defects determine the far-field director diSpaper] The saddle-splay term is a pure divergence; it reduces
tortion produced by a droplet and the nature of dropletto integrals over all surfaces, including interior surfaces
droplet interactions. Experimerit82,34 show that each wa- formed, for example, by water droplets. For spherical sur-
ter droplet creates a companion point defect leading to dipoleaces with normal boundary conditions, these integrals are
distortions of the director field at large distances. This is inconstant and do not vary, for example, when separations be-
contrast to the quadrupolar “Saturn-ring” configuration in tween droplets are changed. To keep our calculations as
which a disclination ring encircles a droplet at its equatorsimple as possible, we will use the one-constant limit of the
that has been extensively studiggb—38. Our calculations Frank free energy:

show that the experimentally observed dipole configuration

is the preferred one, and that it leads to a dipole-dipole in- . 3 ) )

teraction between drops that gives rise to the experimentally F= in d*r[(V-n)"+(VXn)“]

observed chaining of droplets. It is interesting to note that
similar topological dipole configurations appear in two-
dimensional systems includin@l) free standing smectic
films [39], where a circular region with an extra layer plays
the role of the emulsion water droplet; aifi®) Langmuir N 3 N

films [40] in which a liquid-expanded inclusion in a tilted =§Kf d°r Vin;Vin;+ 3(K—2Kz)
liquid-condensed region plays a similar role.

The outline of this paper is as follows. In Sec. Il, we
review important elastic and topological properties of nem-
atics. In Sec. Ill, we provide an overview of important ex-
perimentally observed properties of inverse and multipleSince surface energies do not play an important role in the
nematic emulsions. In Sec. IV, we calculate the director conphenomena to be discussed in the paper, we will set the
figurations and energy of a single water droplet in a uniformsaddle-splay constar,, equal to zero unless otherwise
nematic using various variationAnsdze In Sec. V, we in-  specified. WherK=2K,,, the free energy reduces to the
troduce a phenomenological free energy to describe londirst line of Eq.(3), which is invariant with respect to rigid
distance director distortions and interactions among dropletgotations of any director configuratiofiNote: In Ref.[22],

—K24f dS-[nV-n+nX(VXn)], 2

xfds'[nV~n+n><(V><n)]. 3

Finally, In Sec. VI, we summarize our results. calculations were done witk=K,.]
Il. ORDER, ENERGY, AND TOPOLOGICAL DEFECTS B. Surface energies
IN'NEMATICS Surfaces generally impose a preferred alignment direction

dof the nematic director relative to their local normals. The
energetics of this alignment are described by the Rapini-
Papoular phenomenological surface free ené¢aAgy}

A nematic liquid crystal is a uniaxial, homogeneous flui
characterized by a unit vectaor, called the Frank director,
specifying the direction of the principal axis of a symmetric-
traceless-tensor order parameter. The ground-state free en-
ergy of a nematic is invariant under all spatially uniform Fs= %Wf dSsir? v, (4
rotations ofn and under all inversions— —n. In addition,

all physically observable quantities are invariant underwherey is the angle between the director and the surface
n— —n. The ground-state manifold or order-parameter Spacyma|. Homeotropic or normal alignment is favored by

is the unit sphere in three dimensic®with ozpposite points  \x~ 0, and tangential alignment by< 0. The coupling con-
identified, i.e., the projective planRP?=S%Z, [2,3.10.  gtantw varies in the range 10%-1 erg/cnt [44], with typical
The topological structure of the ground-state manifold deters ;5 ,es of order X 102 erg/cn? [45).

mines the types of possible topological defects. As we will
review below, nematics can have both line defédtsclina-
tions) and point defectshedgehogs

In addition to the above surface alignment energy, in
emulsions, there is the energy arising from the surface ten-
sion of the water-surfactant-oil interface. This energy is sim-
ply the surface tensionr times the total surface area
A. Frank free energy

The energy of slowly varying spatial distortions of the FU=UJ ds. (5)
directorn(r) is determined by the Frank free energy

L 5 5 ) ) The surface tension is of order 10 ergfci46].
F= Ef dr{K1(V-n)*+Ka(n-VXn)“+Ks[nX (VXn)]%} We can now discuss the relative importance of the surface
energies and the bulk Frank energy. Consider a spherical
nematic drop of radiua with W> 0. If the director is every-
where normal to the surface, as the surface alignment energy
favors, the Frank elastic energy isr8a, and the surface
where K, K,, K3, andK,, are, respectively, the splay, alignment energy is zero. On the other hand, if the director is
twist, bend, and saddle-splay elastic constditisere is also  parallel throughout the interior of the drop, the Frank energy
the possibility of another surface term with energyis zero, and the surface alignment energy i8/8a%/3. The

—f d3r K,V - [nX(VXn)+n(V-n)], (1)
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FIG. 1. Two director configurations for a strengthlisclination.
In a two-dimensional nematic, the left and right figures correspond,
respectively, to disclinations of strengths% and — % In a three-
dimensional nematic, these configurations can be converted into
each other via continuous transformations of the director.

surface energy scales a§ whereas the elastic energy scales
asa. Thus surface energy dominates over elastic energy for
large drops, and we may assume, to a good approximation,
that the preferred direction of surface alignment is imposed
as a constraint. On the other hand for small droplets, elastic
energy dominates over surface energy, and we should expect
the surface director to deviate from its preferred orientation.
The characteristic droplet dimension beyond which we may
assume rigid boundary conditions is,=K/W~10"5/3
x10 ?~0.3 um. Typical droplet radii in the experiments of

Poulinet al.[22] are larger than m, and we may use rigid rotating the director at every point throughi2 about the vertical

boundary conditions to interpret them. axis. (c) A hyperbolic hedgehog obtained from the radial hedgehog

Similar considerations apply to shape distortions of th&,, yating the director at every point byabout the vertical axis.
droplets. The positive surface tension favors spherical dropg, each case, the figures at the left provide a three-dimensional

of either liquid crystal in Watezr or of water in liquid crystal. gepiction of the defect, whereas that at the right shows a projection
The surface energy scales@a“. Thus, we can expect drops onto any plane containing the polar axis.(bj, standard notation in

to be spherical and undistorted by the nematic director folyhich the nail heads indicate the end of the director coming out of
drops larger tham,=K/o~1 nm. In what follows, we will  the plane is used.

assume that water droplets remain spherical and that normal

boundary conditions are rigidly imposed at nematic-waters—tan1y/x is the azimuthal angle in they plane. The

interfaces. energy per unit length of such disclination lines calculated
from Eq.(2) is

FIG. 2. (a) A radial hedgehog in which the director points radi-
ally outward from a central point like the electric field of a point
charge(b) A circular hedgehog obtained from a radial hedgehog by

C. Topological defects = %WK IN(R/T o)+ e, (6)

Topological defects in ordered media are singular regions
of spatial dimension less than that of physical space that ar¢hereR is the sample radius,; is the radius of the discli-
surrounded by order-parameter configurations that cannot beation core, and; is the core energy per unit length, which
transformed to a homogeneous ground state via continuous of orderK.
deformations. There are two kinds of topological defects in a Hedgehogs are point defects characterized by an integer
nematic. They arél) line defects, called disclinations, with topological charge specifying the number of times the unit
winding number of strength in which the director under- sphere is wrapped by the director on any surface enclosing
goes a rotation ofw in one circuit around any one- the defect core. An analytical expression &pis [3]
dimensional path encircling the linear defect core, §2d L
point defects, called hedgehogs, in which the director sweeps _
out all directions on the unit sphe& as all points on any 9= 8 f dSeijn- (90X ), ™
two-dimensional surface enclosing the defect core are vis-
ited. The only topologically stable disclinations have wind-where the integral is over any surface enclosing the defect
ing number;. All director configurations on a loop can ei- core. For an order parameter wily (vecto) symmetry, the
ther be shrunk continuously to a single point in the order-order-parameter space $, and hedgehogs can have posi-
parameter space, in which case the loop encloses no defetive or negative charges. Nematic inversion symmetry makes
or they can be continuously distorted to a pattRiR? start-  positive and negative charges equivalent, and we may, as a
ing at some arbitrary point and ending at a diametricallyresult, take all charges to be positive.
opposite point, in which case the loop, encloses a disclina- There is a continuous infinity of director configurations
tion of strength3. Typical director configurations for a for each value of the hedgehog charge. In the simplest unit-
strengths disclination are shown in Fig. 1. charge hedgehog configuration shown in Fi@) 2the direc-

In the simplest disclination configurations shown in Fig.tor points radially outward from the point core like the elec-
1, the director is n=(cos¢/2,=sin#/2,0), where tric field near a point charge. This configuration is called a
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radial hedgehog for obvious reasons. Other configurations
can be obtained from the radial configuration via rotations
through arbitrary angles about any axis. Two examples are
shown in Figs. %) and Zc). When the director of a radial
hedgehog is rotated about a fixed axis througha hyper-
bolic hedgehog shown in Fig.(@ is produced. The hyper-
bolic hedgehog can be obtained from a radial hedgehog via a
series of continuous distortions of the director passing
through intermediate configurations such as the “circular”
configuration shown in Fig. (). Thus, radial, hyperbolic, hyperbolic
and all intermediate hedgehogs are topologically equivalent.
The energies of the simple hedgehog configurations FIG. 3. A radial and a hyperbolic hedgehog combining to give a
shown in Fig. 2 in a sphere of radii®with free boundary ~configuration with hedgehog charge zero.
conditions at the outer surface are easily calculated fromthe =~ = .
Frank free energyEq. (1)]. The Frank director for these  Disclination rings can carry a hedgehog chaggas mea-
configurations aren=(x,y,z)/r for the radial, hedgehog Suréd by the integral in Eq(7) evaluated over a surface
n=(y,—x,2)/r for the circular, hedgehog and er_mlosmg the (ln¢47,4a. F.|gure.4 depicts dlschnguon rings
n=(—x,—y,2)/r for the hyperbolic hedgehog, where with far-field Q|rector configurations correspondlng to radial
r=(x,y,z) andr=|r|. In a spherical region of radiug, and hyperbollt_: charge—l hedgehogs. Thesg rings can pe
their respective energies are shr_unk to a point Ieaw_ng a point hedgehog. Since the discli-
nation ring is topologically equivalent to a hedgehog, one
Eradia™ 87(K1—K2g) R—8m(K—- K2R, can ask whether it is energetically favorable for a point
hedgehog to open up to a disclination rifg,35. If one
8 8 assumes that order parameter configurations remain uniaxial,
Ecire= 75 (3K3+ 5Kz +2K; = 5Kz R— == (2K— K2R, one can obtain a crude estimate of the radgsof the dis-
) clination ring using the expressionggs. (6) and (8)] for
disclination and hedgehog energies. The director configura-
87 87 tion of a charge-1 disclination ring is essentially that of
Ehype,=1—5(3K1+ 2K 3+ 5K,y RH?(K"F Koa)R, simple disclination line discussed above E8).in the vicin-
ity of the disclination core, i.e., up to distances of orér
where the final expressions are for the case of equal elast%rzom the fing centgr. Beyond this radius, the (_j|rector con-
guration is approximately that of a hedgeh@gdial or hy-

constants. WheK,,=0, these energies reduce to those cal- bolia. Th . h f a disclinati
culated in Ref.[33]. The hyperbolic hedgehog has lower per olig. 'hus we can estimate the energy of a disclination
energy than thé radial hedgehog providegk 6K ;— 10K , ring of radiusR, centered in a spherical region of radRgo

or K>2K,, for a single elastic constant approximation.
Thus, if K,4,=0, the hyperbolic hedgehog always has the . 1 _
lower energy. The circular hedgehog has the most bend. Fring™27RolamK IN(Ro/ro)+ €]+ 8maK(R=Ry), ©
SinceK; is generally the largest elastic constant, the circular

hedgehog generally has the highest energy providgdis where a=1—k,, for a radial hedgehog and=(1+k,,)/3

not too large. IfK=2K,,, the energies of the three hedge- ¢5, 5 hyperbolic hedgehog, whekg,=K,,/K. Minimizing
hog configurations are equédnd equal to 4KR), as one  er R, and settinge,=K, we find

could have predicted from E@2), which is invariant with
respect to rigid rotations of even a spatially varyimgvhen 16 1
Ro=r. ex ( )

radial

K=2K,,. In confined geometries, the Rapini-Papoular sur- a— == (10

. . 4 16
face energy competes with the, surface term to determine

defect configurations. Though admittedly crude, this approximation gives a result

In systems with vector symmetry, the combined topologi-that has the same form as that calculated in Ref8, 35,
cal chargdi.e., the charge obtained by evaluating Eg).on

any surface enclosing both hedgehog cbfstwo hedge-
hogs with respective chargeg and g, is simply the sum
g;+d,. In nematics, the sign of the topological charge has
no meaning, and the combined topological charge of two
hedgehogs is eitheq,+q,| or |q;—q,|. It is impossible to
tell with certainty which of these possible charges is the cor-
rect one by looking only at surfaces enclosing the individual
hedgehogs. (a) (b)

We will be primarily interested in how two unit-charge
hedgehogs can combine to give a hedgehog charge of zero. F|G. 4. Disclination rings with unit hedgehog chargey radial
Figure 3 shows how radial and hyperbolic hedgehogs caRedgehog andb) hyperbolic hedgehog. The dotted line in each
combine to give a charge-zero configuration, i.e., a configufigure represents a sphere of radRsbeyond which the director
ration in which the director is parallel at infinity. configuration is that of a hedgehog.
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50], using a more sophisticated continuduissatz It has the
virtue that it applies to both radial and hyperbolic far-field
configurations. It predicts that the hedgehog with the lower
energy far-field configuratiofi.e., the one with smalle)

will have the smaller disclination-ring radius. k,=0, the
hyperbolic hedgehog has the lower energy with 3 rather
thana=1. In this case, the core of a radial hedgehog should
be a ring with radiusRy~r.e?® or Ry=0.2um for
re~100 A. The core of the hyperbolic hedgehog, on the
other hand, will be a point rather than a ring because
Ro~r.e %%8r,.

If the constraint that the tensor nematic order parameter
Qjj be uniaxial is relaxed, then the core of a disclination can
become biaxia[51], with a core radius of order the biaxial
correlation lengthé,. The energy of a disclination is still
given by Eq.(10) with r.~¢&,, and with a core energy de-
termined by the energy difference between the biaxial and
uniaxial state rather than the energy difference between the
isotropic and nematic states. A hedgehog can also develop a FIG. 5. Possible director configurations induced by a single

biaxial core with radius of ordef, . Because the biaxial core spherical droplet with homeotropic boundary conditions in a nem-
is characterized by a nonvanishing biaxial order parameteggic with total topological charge of zeréa) Dipole configuration

its structure is not the same as that of the uniaxial disclinawith a companion hyperbolic hedgehtigdicated by an arro (b)
tion ring discussed above. Calculatiofs2] based on the Dipole configuration with a companion hyperbolic disclination ring.
Landau—de Gennes free energy for a nematic predict a biaxe) Quadrupolar Saturn-ring configuration with a disclination ring
ial core size of order 0.02am for MBBA (methoyxbenzil-  encircling the water droplet at its equator. The direction of the
idene butylaning A detailed analysis of the competition be- topological dipolep is shown in(a).

tween a biaxial core and a biaxial disclination ring has not

been done.

It is very difficult to predict with certainty what the core
structure of a hedgehog will be. If the core is a disclination
ring, its radius varies exponentially with the elastic con-
stants. If the core is biaxial, it will have a biaxial structure
out to a radius of order the biaxial correlation length, which
should be of order 100 A or less. The general argument
given above would lead one to expect hyperbolic hedgeho
to have the smallest core size. In the experiments of Pouli
and co-workerg§22,34, all hyperbolic hedgehogs that were
observed have cores that are pointlike to the resolution of th
optical microscope.

tion [Fig. 5(c)]. Director configurations for many droplets
can be constructed from the single director configurations
shown in Fig. 2. Other configurations in which the hedgehog
charge of water droplets is canceled by continuous textures
in the surrounding nematic rather than by the formation of
oint hedgehogs or singular disclination rings are possible.
or example, if there are two droplets, the radial configura-
on around one droplet could continuously deform to a hy-
Berbolic configuration passing through intermediate configu-
rations such as the “circular” hedgehog of in Figh2 The
final hyperbolic configuration could combine with the radial
configuration of the neighboring droplet to produce a con-
figuration with zero charge but without any point defects in
the nematic, as shown in Fig(&j. Alternatively, there could
be a more symmetric configuration with a toroidal “escaped
In the experiments reported by Poukbal.[22], a nem- strength one” nontopological disclination ling53], as
atic liquid crystal(pentyl cyano biphenyl, or 5CBa surfac-  shown in Fig. 6b).
tant (sodium dodecyl sulfate, SD@nd water are mixed to- In the experiments of Poulin and co-work¢g2,34, the
gether to produce inverted and multiple liquid crystallinedipole configuration shown in Fig.(® is almost always ob-
emulsions. The inverted emulsions are placed in a thin rectserved. When many droplets are in the cell, each droplet
angular cell of approximate dimensions 20nx1 cm  forms a dipole with a companion hyperbolic defect, so the
X1cm. The large-area upper and lower surfaces weréotal charge of the multiple droplet system is zero, as re-
treated to produce tangential boundary conditions. Thus thguired. Furthermore, the droplet dipoles align in chains par-
total hedgehog charg®@ in the cell, obtained by performing allel to the cell-director as shown schematically in Figs@e
the integral in Eq(7), is zero. With normal boundary condi- also Figs. 8 and 9 of Ref34]). Occasionally, droplet pairs
tions, each water droplet nucleates a radial hedgehog afre observed to induce director configurations that cannot be
charge 1. To maintain zero charge in the cell, compensatingnterpreted in terms of companion hedgehog defeste Fig.
director distortions, usually point or line defects, must bel2 of Ref.[34]]. These configurations may be of the type
created out of the nematic itself. Possible director configurashown in Fig. 6b).
tions of a single droplet with total charge zero are shown in In multiple emulsions, water droplets are confined to the
Fig. 5. A single droplet could nucleate a companion hyperinterior of nematic drops with spherical symmetry. If the
bolic hedgehogFig. 5a)], or it could nucleate a disclination outer surface of the nematic drop enforces homeotropic
ring of finite radius lying above or below the droplétig. = boundary conditions, then the total topological charge in the
5(b)] or encircling the droplet in a “Saturn-ring” configura- nematic drop is 1. If there are no water droplets in the nem-

Ill. DIRECTOR CONFIGURATIONS
IN INVERTED NEMATIC EMULSIONS
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radial

—-— hyperbolic

circular

(a) (a) (b)

FIG. 8. (a) Schematic representation of the director configura-
tion of a nematic drop with no interior water droplet. The director is
forced by boundary conditions to have a radial configuration at the
outer surface. As the distance from the surface increases, the direc-
tor seeks lower energy, nonradial configuratigh$ Schematic rep-
resentation of the director configuration of a nematic drop with a
single interior water droplet. Homeotropic boundary conditions at
the outer and water-droplet surfaces force a radial configuration

FIG. 6. Schematic representation of the nonsingular directofVerywhere.
configuration produced by two water droplets whose boundary con- . . .
ditions produce radial hedgehods) The radial hedgehog around ated. The droplets and defects form linear chains with an
one droplet converts continuously to a hyperbolic configurationUnpaired droplet as, shown in Fig($ee also Fig. 14 of Ref.
which then combines with the radial configuration of the other[34]). These chainsor the single water droplet if that is all
droplet. (b) The radial configuration around each droplet convertsthere ig are rigidly placed at the center of the nematic drop-
smoothly to a toroidal “escaped strength-1" nontopological discli- let, and undergo no observable Brownian motion.
nation that encircles the axis defined by the droplets. We are grate-
ful to R. B. Meyer for suggesting configuratigh) to us. IV. CONFIGURATION AND ENERGY
OF SINGLE DROPLET

atic drop, there must be a point hedgehog defect in the inte-
rior of the drop. In general, the radial hedgehog favored by
homeotropic boundary conditions at the outer surface doed
not have the lowest energy. Instead, there is an evolutio
away from the radial configuration with distance from the
droplet surface[54,33, as depicted in Fig. @. Under

In Sec. Ill, we discussed possible director configurations
duced by the presence of spherical water droplets with ho-
eotropic boundary conditions in a nematic with parallel

oundary conditions at infinity. Experiments show that the
water droplets create companion hyperbolic hedgehogs
; . , . ; . rather than disclination rings. In this section, our goal is to
crossed polarizers, this configuration will appear as a rotatin alculate the equilibrium separation of the droplet from its

cross. A single water droplet in the interior of the nematic ; dt th fthe dinol fi
drop will create a radial hedgehog. Since the total topologi-compan'on’ and to compare the energy of the dipoie contigu-

cal charge of the nematic drop is 1, no compensating defecf@t'on with that of the Saturn ring and intermediate configu-

must be created from the nematic. The configurations enr_ations depicted in Fig. 5. The calculational program is in

forced at the water droplet surface and at the outer surface inciple 'qune S'”?P'e: solve the E'u.ler'-La'grange equations
the nematic drop are both radial. As a result, the directo or the director arising from the minimization of the Frank

adopts a radial configuration throughout the drop, as depicte(ﬁee energy Eq. (2)] subject to the normal boundary condi-
in Fig. 8(b) (see Fig. 13 of Ref(34]). Under crossed polar- tions at the surface of the water droplet and parallel boundary
izers, this configuration will appear as a rigid unrotatedconditions at infinity. Unfortunately, the Euler-Lagrange
crosé A second droplet added to a nematic drop creates uations are highly nonlinear, and analytic solutions cannot
additional interior radial hedgehog. In order to satisfy the e found except for a few special geometries and bound-
global boundary condition of charge 1, a hyperbolic defect is
created out of the nematic. If there akk water droplets
inside a nematic drog\ —1 hyperbolic defects will be cre-

FIG. 7. Schematic representation of a chain of three water drop- FIG. 9. A nematic drop with three internal water droplets. The
lets in a cell with parallel boundary conditions at infinity. Each three water droplets and their two companion hyperbolic defects
droplet creates a companion hyperbolic hedgehog, and droplets afidrm a linear chain at the center of the nematic drop. The total
companions defects lie on a single line. charge of this configuration is one.
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y zy
ary conditions. We can, however, obtain analytic solutions Ny=Pz3+2C 5.
for the director far from the droplet. Using these solutions
and information, evident from Fig. 5, about the form of di- By dimensional analysig,~a? andc~a®, wherea is the
rector configurations near the droplet, we can constructadius of the sphere. Equatioi$4) produce the far-field
variational Ansaze for the director that obey all boundary configurations of Fig. &) if we choosep, to be positive
conditions and that have the desired defect structure. In thiwhen the companion hedgehog is below the droplet. Thus we
section, we will first discuss the nature of the far-field solu-adopt the convention that the dipole moment of the droplet
tions. We will then use two differennsadze to calculate and its companion defect points from the companion to the
director configurations and their associated energies. Theroplet.
first Ansatzapplies only to the dipolar configuration. The  The multipole expansion of Eq&l3) and(14) eventually
second applies to all of the configurations in Fig. 5, and willbreaks down because of nonlinearities neglected in(EL).
allow us to compare, for example, the energies of the dipolawe can determine the leading corrections by including the

and Saturn-ring configurations. leading anharmonic corrections to the harmonic free energy.
Far from the defect, we can se1=(nx,ny,\/1—nf)
A. Far-field solutions ~(ny,ny,1-3n?), wheren?=n,n,. The leading anhar-

The constraint of zero topological charge requinés to ~ monic correction td-p,,, is then
approacy=(0,0,1) asr —o. We assume thai, is along
the positivez axis. No physical results will change, however, F. = ;KJ d3r(Vn2)2 (15)
if we reflectn, to be along the negative axis. At large but an @ L
not infinite r, the deviation ofn(r) from n, is small, and

n(r)=(n,,n,,1). Thus, at large, we can replace the full and the Euler-Lagrange equations with this correction are
Xty . ’ L]

nonlinear Frank free energy by the harmonic free energy Vznﬂ+ %n#vznf:o. (16)
Fra=3K z d3r(VnM)2, (11) Using this equation, one can show that if the leading contri-
w=xy bution ton, is dipolar, then the first correction to, arising

from nonlinear terms is of the formM/r7. In other words

the multipole expansion of the Laplacian operator gives the

correct larger behavior up to order ~°. Thus we could in

‘principle develop variational approximations in which all of

the multipole moments from order 2 to order 5 are varia-
Vznﬂ=0. (12) tional parameters. We will content ourselves with allowing

only the dipole and quadrupole moments to vary.
At larger the solutions to this equation can be expanded in
multipoles: B. Electric-field Ansatz

where we introduced the notatior),, =X,y for the com-
ponents ofh perpendicular ta,. The Euler-Lagrange equa-
tions arising from this equation are simply Laplace equa
tions:

Any Ansatzfor n for the dipole configuration of Fig.(8)
n,=—+—5+ SR T (13  must be normal to the water dropletsrata, tend ton, as
rr r r—, and have a hyperbolic hedgehog at some position
along thez axis outside of the water droplet. The familiar
electrostatics problem of a charged conducting sphere in an
external electric field can provide the basis forfAamsatzfor
n that satisfies all of these conditions. The electric fields

In addition, the dipolar part should change sign if the posi_normal to the conducting sphere, and it tends to a constant

tion of the companion defect is shifted from above to belowEO:Eoez asr—. If the chargeQ on the sphere is large

the droplet. The requirements are met by Settingenough, there is a point below the sphere at which the

. electric-field vanishes. The normalized electric field configu-
“=(p. M= et etn.: M= SH UL ! ¢ )
tphe u(r?itr\]/tgirangir?ﬁn Ci(nnfr']el _f‘ ngJiZéCVt\?gﬁr?/sé : dintli?y ration in the vicinity of this point is identical to that of a unit
pointing g=x.y ’ vector in the vicinity of a hyperbolic hedgehog. Thus we
the vectorp as the dipole moment of the droplet-defect con- ; . L
figuration, andp- n, with its z component. Thus ib changes have all of the ingredients we need for a variatioAakatz
9 . 0 . P - g We have merely to choose
sign relative ton,, the dipole contribution ton, also
changes sign. In the configurations we consider in this sec- n(r)=E(r)/|E(r)]. (17)
tion, p is aligned either parallel or antiparallel tg, so that
p-ny=*p wherep is the magnitude of the dipole moment. The electric field for the above problem is
The parametet, as we will show in more detail in Sec. V, is

A*  pkorooclirirg

The solutions we seek are invariant with respect to rotation
about thez axis, and have no azimuthal componenhtf.e.,
no twist inn about thez axis). This implies thatA*=0, and
thatn, andn, must be proportional, respectively, xandy.

. 3
the amplitude of the quadrupole moment tensgrof the E(r) LA
droplet-defect combination. Thus we have Eo =& tAatm s 3zr), (18
nep. X 4 oc2X (14 wherex?=Q/(Eya?) is a unitless measure of the strength of
x=Pzi3 ro’ the electric field produced by the char@ecompared to the
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U/u, strengthp,. We would also like the generalization to put
20 fewer constraints on the allowed valuesmfandc. In par-
ticular, since in certain situations the signco$eems to be an
16 important quantity, we should certainly not restigcio be of
12 a particular sign in thé\nsatz Rewriting Eq.(18) as

i =L
ry/a Eo

3 3

a L 3za
e,+\a r—g+ = r (21

1=

motivates the following generalization containing the afore-

FIG. 10. Energy(in units of Uy=m7Ka/2) of the droplet dipole mentioned desired properties:

as a function of the distand@ units of the droplet radiua) from

the droplet center to the companion hedgehog. E(r) aki r B,a° ﬁzakz
—z(l——k— e+t N°a? 5+ | —+ 7| 2r.
Eo rei r r re2

fixed external fieldE,, and a is again the radius of the 22)
sphere. The last term in this expression arises from an image
dipole at the center of the sphere that enforces the boundais pefore,p,=\2a? and nowc=;a32, provided that in

condition thzatE be normal to the surface of the sphere atcarrying out the minimization over the appropriate free pa-
r=a. For\“>3, we find precisely one zero of the electric rameters we finé, andk, are both greater than(® this had
field atr=—zqe, outside the sphere, wherg is the appro- ot been the case then the far-field behavior would not have
priate solution to been corregt Minimizing, we find an energy considerably
3 2 2 - lower than that found using E@18). We obtain the results
2]~ 2|\ *a*+2a%=0. 19 for U, z, p, and C given above. In addition, we find

(For A?=3, the point of the zero electric field just touches k1=4.88,k,=3.73, andg,=4.27.

the sphere, and fok?<3, a singular ring appears on the

surface of the spheiez, is the distance 4 from the droplet C. Second dipoleAnsatz

center to its companion defect. At largen(r) becomes To study the transition from a dipole to a Saturn ring and
to establish that the dipole has a lower energy than the Saturn
B oTu Ny ring, we need am\nsatzthat allows disclination rings and a
n,=(\a) r—3+3a e (20) limiting hyperbolic hedgehog. To construct oAnsatzwe

use appropriately symmetric solutions to a related two-

in agreement with Eq14). Thus the dipole moment is?a?, dimensional(2D) problem and modify their far-field behav-
and the quadrupole moment ia%2. The variable is a  ior to match the required 3D far-field behavidollowing a
variational parameter that determines both the position of theoute analogous to that in Refs85, 36 for the case of the
hyperbolic defect and the magnitude of the dipole momentequatorial ring,.
The Ansatzfixes the quadrupole moment independent of the To make contact with 2D configurations, it is convenient
value of \, and constrains the dipole moment to be greateito look at the general problem via the following parametri-
than 32 A natural energy scale i§l,=mwKa/2. The re- zation:
duced energy/U, calculated from Eqs(17), (18), and(1) , , )
is plotted as a function of the distance between the sphere "= (Sin ©(r)cos®(r),sin O(r)sin d)(r),cos@(r))(zg)
and the companion defect in Fig. 10. The energy at the mini-
mum of the curve i&J =9.00J,. At this minimum, the other
parameters characterizing the droplet-defect pair
Zo=1.1%, p,=3.022%, andc=3a?/2.

Of course we have na priori reason to expect a normal-
ized electric field to yield the true minimum energy configu-

r=(rsin 6 cos¢,r sin 6 sin ¢,r cos o),

A'%here we have expressedin the usual spherical coordi-
nates. The full Euler-Lagrange equationgtimnd® arising
from the free energy of Eq2) are simply

ration for this problem. By modifying our chosét{r) to be V20 —sin® cos®O(VP-Vd)=0,
a slightly more general vector field, and by no longer insist-
ing that it be a true electric field, we may hope to improve SiNnOV2d+2 cos®(VO-Vd)=0.

our Ansatzand to relax the constraints put uppn andc.

We introduce below one such generalization that provides ahe nonlinearity of the above coupled partial differential
significant ~ improvement: U=7.81,, zo=1.26a, equations make closed-form solutions difficult to obtain,
p,=2.20%, andc=—1.0%°. In particular, we note here though we note here for completeness tBat 6, = ¢ is
that the sign ot is the opposite of what we had previously indeed a solutior{the radial hedgehggand thus that solu-
constrained it to be through our electric-fiedahsatz tions are not impossible to find.

We now present the generalization of the electric-field Turning now to the problem at hand, we should certainly
AnsatzE(r) in Eq.(18) used to calculate the results discussedimpose the condition of azimuthal symmetry, namely,
above, and mention a few of the important properties it posd,®=0, d,2®=1, and0|,_,, is either 0 orm. We will
sesses. We insist that the generalization maintain the corretchpose a more stringent constraint énnamely thatb = ¢,
far-field behavior to quadrupole order, so that we can idenwhich allows us to use our knowledge of 2D nematic con-
tify the quadrupole strengtlc as well as the dipole figurations to construct 3D azimuthally symmetric configu-
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rations(this more stringent condition was also satisfied in the
electric-field Ansatz. This leaves us with the single Euler-
Lagrange equation

726 sin 20
T 24
b c
whose nonlinearity still makes solutions difficult to obtain. " .
Using now that we want—(0,0,1) (or ® —0) asr —o, we FIG. 11. Utilizing the method of images we are able to construct
can linearize Eg(24) and find the form of the far-field solu- solutions for the related 2D problem of a nematic with homeotropic
tions, boundary conditions at infinity and with normal boundary condi-
tions on a circle about the origin. These configurations are then
* T sin 6 3sin29 extended to 3D configurations by spinning them about their vertical
0— E kT Pi(cos0)=A, r2 +A; 2r3 toee symmetry axis, where the singularity along the vertical axis become
k=1 singularities in three dimensioripossibly removable ones as in the
sin @ sin 26 case of the+2 defect at the originand the symmetric pairs of
Epzr—2 +cC 3 +eee (25 defects off the axis become singular defect rings. Note that in our

calculations we are not really concerned with the from of the field
inside the circle since the nematic is only present in the exterior, the
field is merely drawn here to elucidate the origin of the ansatz used.
(a) A hyperbolic defect beneath the sphefl) A non-equatorial
disclination ring.(c) An equatorial disclination ring.

where the last line defings, andc to match the definitions
of these quantities in Eq14), as one can check by substi-
tuting this form for® into Eq. (23).

Given the restrictiond = ¢, we note that in the-z plane

we have with respect to the poirgy on thez axis, when made into a

(26) 3D configuration indeed satisfies the 3D EL equations. In
two dimensions®,+ ®, is a solution to the EL equations
For n,p, We have a wealth of information about how to Provided both®, and®, are. However, because the 3D EL
construct solutions for the harmonic free energy, equations are nonlinea®; + ®, is in general not a solution
to the 3D El equations even®, and®, individually are. It
. ) ) is this fact that prevents our ansatz configurations from being
FZD_EKJ dr(Vzp®)~. (27 true solutions to the 3D equations.
We now construct ouAnsatzfor a sphere at the origin
It would be nice if our problem reduced to this linear prob-with a compensating unit strength hyperbolic hedgehog. To
lem. However, even though this is not the case we can stilkeep equations as simple as possible, we use units in which
exploit our knowledge of the 2D solutions to constréet-  the sphere radius is 1. As discussed above, we first construct
satz solutions for the 3D problem. The procedure is quitea solution to the two-dimensional problem. This is done us-
simple and has at least some promising motivations. Anyng the fact that a defect of strengthh at position

N,p=(sin ®,co0s0).

configuration ofn,p that is invariant undek— —x can be  r,p=(Xq,Zp) is described by the field
converted to a 3D configuration by spinning aboutztexis ~ ® =q tan [(z—z)/(x—Xo)]. Boundary conditions at the
to produce sphere’s surface and at infinity can be met by placing a
strengthq= + 2 defect at the sphere’s center-d defect at
n=(sin ® cos ¢,sin O sin ¢,cos0O), (28)  position (05-r) for arbitraryry, and an image-1 defect
inside the spheres at (q,l) as shown in Fig. 1(). This

a solution with thed = ¢ constraint.

Furthermore we note that the canoniggh= +1 defect
on thez axis becomes g=1 radial hedgehog in three di- r sin g 'r . sin 6
mensions, and the canoniogyp=—1 defect on thez axis ®0=20—tan—1——tan‘1d—,
becomes ay=1 hyperbolic hedgehog in three dimensions rcoso+rq rrqcoso+1
(recall that in two dimensions the charges of nematic defects (29)
are signed, and their composition law is addijioAlso, any .
symmetric pairfwe need a pair to maintain the required re- yvhere we have taken the radius of the sphere to be 1r@r_1q
flection symmetry about the axis) of q,p= = : defects off is the dls_tance from the defect below the sphere to the origin.
the z axis, when spun into a 3D configuration, become aWh|Ie thls does have the correct form_ near the defect at
strengthZ-disclination ring. Finally, we note that satisfying 2. 'd 't does not have the correct far field form for the 3D
the 3D boundary conditio(BC) on the sphere, namely that problem. In fact,
n=e¢, on the sphere, simply requires satisfying normal BC's
on the circle in two dimensions. In two dimensions, we can ror =27 2y o T
satisfy these BC's using the method of images, which works gl 473 re ’
because of the linearity of the Euler-Lagran@l) equa- (30)
tions.

Before writing down the ansatz we note that the 2D con-which does not agree with EqR5). However, we note that
figuration © = 0z, where 02, is the polar angle measured to the order shown, it differs only by an overall power oft

leads to

( 1)sin0 ( 1)sin00050
O%
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(this is not true for the higher order terms not shov8o, we Now taking the sphere to have a radiusafas in the
alter @, in the following way, taking care to preserve the electric-field Ansatz we find p,=2.042%, c=—1.0&3, and
BC's atr=1: U=7.84J, in very good agreement with the results obtained
_ ) from the generalized electric-fieldAnsatz In addition
©=20—tarrl_ oM 0 _qpi_Trasing rq=1.222 agrees nicely with the corresponding quantity
r cosf+ry rrg cosé+1 zo=1.26a obtained from the electric electric-fieldnsatz
Preliminary results obtained via numerical solution to the
+e ki ry+ i _ EJF iz sin 6+ E 2+ 5 full EuIer-Lagrange equations for this problem are in excel-
rg rr 2 rg lent agreement with thesgnsatzresults[55].
1 1\ . 1/, 1 1 _ )
X 2 r_3)S|n 20+ 3 ra+ G - r_3+ P D. From dipole to Saturn ring
We can easily generalize the angular parametrization of a
. point defect just discussed to describe an annular ring defect
xsin 6(4 cos ¢ l)}' (3Y) with a varying opening angl®y [Fig. 11(b)], and thereby
study the transition from a dipole configuration wif= 7 to
which now has the far-field form the Saturn ring withdy= /2 [Fig. 11(c)]. We proceed ex-
. . actly as in the point-defect case. We place one strergh
O~|ry+ 1 ﬂza_ E(iﬁrg)ﬂ (32)  defect at the center of the circle, two strengtt} defects at
rg/ 1 2\rg rop="rq(=sin 4,c086,), and two strength- 3 images inside

i , ) 1 the sphere at2D=rgl(tsin 04,c0s6g). This gives a solu-
This azgrecis2 with .Eq. (25 with P=lat g™ and  ton to the 2D problem with two strength 3 defects outside
¢=—(rg*rq")/2, which, contrary to the electric-fieldn- e circle. When promoted to 3D, this solution correctly sat-
satzis negative(recalla=1). The factore ¥, introduced isfies homeotropic boundary conditions at the surface of the
for numerical convenience, tends to 1 at larg@and to a sphere, and it yields a strengjdisclination ring outside the
value near the sphere controlled by the variational parametesphere with an opening angle @f. It fails, however to
k. Substituting this formiEq. (31)] for ® (and®=¢) in Eq.  produce the correct far-field form for. We add terms simi-
(2) and minimizing overry and k (numerically, we find lar to those of the preceding calculation to correct this defi-

k=0.32 andry=1.22. ciency to produce
|
1 r sin 6—ry4 sin 6, r sin 0+rg4 sin @ rrq Sin 6—sing rrq Sin 6+sin 6
®=20—=|tan d d . d d 4 My d | g2t d
2 r cosf—ry COS by r cosf—ry CoS by rr4 COs 6—cos by rry COS 6—cos by
e 1\/1 1 . ) 1 1 ]
+e rg+ —||=— —|cosbysin 0+ ri+ —|| 5 — —|(—1+2 co 6y)sin 6 cos 6
rq/\r r rg/\re r
1/, 1)1 1 )
+3|rat /| ;3 racos 04(4 cog 64— 3)sin 6(4 cog 6—1)|. (33
d

The director configuration in the vicinity of the disclination hedgehog to the Saturn ring as a function of the core size. As
ring is singular, and the above form breaks down at distanceie core size increases, the cores sit closer to the sphere,

from the disclination ring less than the core radiys The u/u, -
equatorial ring configuratiordy= /2 has been investigated 12 |® o
previously[35,36.

Figure 12 shows the enerdy in units of Uy= wKa/2 for 11 o o
various values of)y obtained by minimizing the free energy
[Eq. (2)], augmented by an additional core energy 10 o ¢
74K sin 642, over the variational parameterg andk in
the Ansatzfunction Eq.(33). The reduced core radius in ?
these calculations was chosen to he=10"3. We have °

) - 8 o 6,

checked that our results are insensitive to the value, dbr 7 a/a i

10 4<r.<10 2. However, as we investigate larger core
sizes, we find that the local maximum in the energy in Fig.  FiG. 12. Energy vs angular position of the defect ring. Note that
12 begins to shift towards largéy until r.~0.05, at which  the equatorial ring 4= 7/2) does appear to enjoy some metasta-

point, 84= /2 appears to become the global minimum. Thisbility but that the collapsed ringor effectively the point defect,
suggests that there may be a first-order transition from th@= ) is of much lower energy.
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ry/a — ksT~10 2 erg, K~10 ° dyn, anda=1 um. These fluc-

1 16 ¢ tuations in the length of the topological dipole are unobserv-
ably small.

1.14 We have argued that the topological dipole prefers to

align parallel or antiparallel to the director at infinity. We

L.12 will now show that the angular restoring force constints
110 o e o ® o greater thanrKa, so that
[ ]
108 . 0 I P LT 35
n/2 3n/4 T (407 mKa . 39

FIG. 13. The preferred distance from the origin of the disclina- Thus, though of order 30 times greater than fluctuations in

tion ring as a function of its angular position. the length of the dipole, angular fluctuations are still small
enough to be difficult to observe. Interestingly, we note that

creating difficulties in our numerical integrations. As a re-angular fluctuations in the 2D version of this problem are
sult, we have not investigated cores sizes considerably largenuch larger, and have indeed been observed in free standing
thanr .= 0.05. One of u$55] is undertaking numerical simu- smectic films[39]
lations to study this behavior further. Since a typical radius Our approach is to provide afinsatzfor a director con-
of 10 nm will satisfy 104, r.<10 2 for a reduced core figuration with the dipole rotated through an angdlé rela-
radius corresponding to particles with radii as small asr,  tive to the director field at infinity given a configuration in
our results do indicate that the point hedgehog should be th&hich the dipole moment is parallel to the director field at
preferred configuration in the range of particle size of inter-infinity. We will then use thisAnsatzto obtain a bound on
est. Figure 13 shows the equilibrium distance of the ringky. We start with an aligned dipole configuration with
from the center of the sphere for 1b<r.<1072. We note  expressed in polar coordinates according to B®). We
thatry and E for 84~ = agree quite well with the values then construct a rotated configuratior, by slowly rotating
obtained from the point-defe&nsatzpreviously presented. n about they axis as we progress radially outward:
That is, thisAnsatzdoes collapse down to the point defect in

a nice manner. However, we must also note that for ny=sin ® cos® cosf+cosO sinf,
04= /2, the equatorial ring, oury=1.08 is somewhat dif-
ferent from the value of 1.26found by Terentjev and co- n)’,zsin O sind, (36)
workers[35,36].
Further comments about the ring configuration are in or- n.,=cos® cosf—sin® cos® sinf,

der. Recalling that in three dimensions the point-defect sin-

gularities represent integrable singularities whereas the ringshere the amount we rotate at each point is given by the
defects do not, one might naively expect that rings shouldunction f(r) which must satisfy the boundary conditions
always collapse into points. As discussed in Sec. Il C, how-

ever, this is not always the case. Even an isolated point sin- f(r=a)=0, 3
gularity might have higher energy than an isolated ring sin- (37)
gularity [49,35,5Q0. But it is worth noting that in such f(r=R)=A0.

circumstances the equilibrium radius of such rings turns out
to be quite small £0.2 um). Thus here we would naively A6 denotes the tilt angle of the dipole with respect to the far
expect that if a ring configuration were to exist it would field, a the droplet radius, an& the system size. To see that
probably not be an equatorial ring configuration. This provesi is the stated tilt angle we note that the far field rof
to be correct, as we see in Fig. 12. Though the equatorial ringnakes an anglé\¢ with the z axis, and, furthermore, the
does appear to enjoy some metastability, its energy is corifransformation oh to n’ does not change the position of the
siderably higher than that of the point defect below thesingularity, or of the droplet itself. Thus, the droplet-defect
sphere. dipole (p) is still aligned with thez axis.

We denoteF (A 6) as the free energy of the tilted dipole
configuration and, accordingly, refer E(0) as the free en-

ergy of the aligned configuration. Using E@), we find
We have seen so far that the point defect beneath the

sphere is the energetically favorable configuration. The elas- L 3 .
tic constantk for deviationsAz from equilibrium separation F(AH)_F(OFEKJ d®r(1-sir® ® cos ©)Vf-Vf,

E. Thermal stability

z, is simply the curvature of the energy-versus-separation (39
curve[e.g., Fig. 10. The dipoleAnsatzyields k=33wK/a.
The otherAnsatzegield similar values. Thus where we have eliminated terms linearfirusing the sym-

metryF(A 0) =F(— A 6). The original unrotated solutions of

interest to us havé® = ¢. By expanding in a Fourier series
< in cosng and sinng, we can show that

[d¢ sir? ¢Vi-Vi<i[dpVf-Vi. Then, using sih®<1, we
where the final numerical estimate follows from obtain

Az)2 kT
Z_o —E~10 , (39
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F(Ae)—F(O)>§Kj d3rVf-Vi§. (39

The right hand side of this equation is at a minimum when
V2f=0 subject to the boundary conditions of H87), i.e.,
when

1—(alr)

=201 Ry

(40

As required,f does not depend ofp. Using thisf in Eq.
(39), we obtain

F(A9)—F(0)>3mK(AB)%a (41)

for R>a, implying k,> wKa.

F. Optical images

In the experiments reported by Poukhal.[22], only the
dipole and not the Saturn-ring configuration shown in Fig. 5
is observed. Figure 14) presents an experimentally ob-
tained image of a single water droplet under crossed polai
izers, with one polarizer parallel to the dipole axis. In the
region of the droplet we see a pronounced pattern arisin
from the spatially varying director field. In Fig. (8 we
show an image of a similar single droplet calculated using
the Jones matrix formalisii26] and neglecting any refrac-
tion at the droplet boundary. The similarity of the two im-
ages is obvious, and clearly confirms the occurrence of th
dipole configuration. Both pictures show two bright wings
left of the droplet. In the calculated picture they are much
more extended than they are in the experimental picture. Th
theoretical picture was calculated using the simple electric
field Ansatz The more sophisticatefinsatzeseduce the re-
gion around the defect where there is rapid variation of the
director. They would yield images in closer agreement with
the experimentally observed one.

V. PHENOMENOLOGICAL THEORY
AND DROPLET-DROPLET INTERACTIONS

To understand the properties of multidroplet emulsions
we need to determine the nature of droplet-droplet interac
tions. These interactions are mediated by the nematic i
which they are embedded and are in general quite compli
cated. Because interactions are determined by distortions ¢
the director field, there are multibody as well as two-body
interactions. We will content ourselves with calculations of . - .
some properties of the effective two-body interaction. To__ T 'C: 14- (8 Image of a single droplet with its companion defect
calculate the position-dependent interaction potential bed> observgd under crossed polan_zers .Obta'n.ed by P. Pabjin. .
tween two droplets, we should solve the EuIer—Lagrang(?SImUIa.lted image of _the same conflgur_at!on using the Jones matrix

. . : - ormalism. The two images are very similar.
equations, as a function of droplet separation, subject to the
boundary condition that the director be normal to each drop- In Sec. Il, we established that each water droplet creates a
let. Solving these nonlinear equations completely in the preshyperbolic hedgehog to which it binds tightly to create a
ence of two droplets is even more complicated than solvingtable topological dipole. The original droplet is described by
them with one droplet, and again we must resort to approxithree translational degrees of freedom. Out of the nematic it
mations. Fortunately, interactions at large separations are ddraws a hedgehog, which itself has three translational de-
termined entirely by the far-field distortions and the multi- grees of freedom. The two combine to produce a dipole with
pole moments of the individual droplet-defect pairs, and theysix degrees of freedom, which can be parametrized by three
can be described by a phenomenological free energy, whichariables specifying the position of the water droplet, two
we will derive in this section. angles specifying the orientation of the dipole, and one vari-
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able specifying the magnitude of the dipole. As we have

seen, the magnitude of the dipole does not fluctuate much Fp:47TKf d*[—P-n(V-n)+BP-(nXVXn)], (45

and can be regarded as a constant. The direction of the dipole

is also fairly strongly constrained. It can, however, deviateynere g is a material-dependent unitless parameter. The
from the direction of local preferred orientatigparallel to a leading contribution td ¢ is

local director to be defined in more detail belowhen there

are many droplets present. The droplet-defect pair is in ad-

dition characterized by its higher multipole moments. The FC=477KJ d3r[(V-n)n-V(niCijnj)

direction of the principal axes of these moments is specified

by the direction of the dipole as long as director configura- +V(n;Cjjn;)-(nXVXn)]. (46)

tions remain uniaxial. The magnitudes of the uniaxial mo-
ments like the magnitude of the dipole moment are energetithere should also be terms . like CijViniVn;. These
cally fixed. When director configurations are not uniaxial,terms can be shown to make contributions to the effective
multipole tensors will develop additional components, whichdroplet-droplet interaction that are higher order in separation
we will not consider here. We can thus parametrize droplethan those arising from E@¢46). Equation(46) is identical to
dipoles by their position and orientation and a set of multi-that introduced in Ref[37] to discuss interactions between
pole moments, which we regard as fixed. kétbe the unit  Saturn-ring droplets, providetC;;n; is replaced by a scalar
vector specifying the direction of the dipole moment associdensityp(r)==,8(r —r?). The two energies are absolutely
ated with dropleta. Its dipole and quadrupole moments are equivalent to leading order in the componenjsof n per-
then p“=pe” and c{j=c(ef'ej - 35;), wherep andc are  pendicular tong, provided alle* are restricted to be parallel
the magnitudes of the dipole and quadrupole moments cato ng. When this restriction ore” is lifted, and to higher
culated in Sec. IV. We can now introduce dipole- andorder inn,, the two theories differ. In our opinion, the sca-
quadrupole-moment densiti€¥r) and Cj;(r) in the usual lar variable cannot strictly speaking be used, because each
way. Letr® denote the position of droplet, then droplet carries with it an anisotropic director environment,
even when the dipole moment is zero.
Since P prefers to align along the local director, the
P(r)=2>, p*s(r—r®), dipole-bend coupling term in Eg45) can be neglected to
“ (42) leading order in deviations of the director from uniformity.
The —P-n(V -n) term in Eq.(45) shows that dipoles aligned
alongn create local splay, as is evident from the dipole con-
figuration depicted in Fig. ®). In addition, this term says
that dipoles can lower their energy by migrating to regions of

We now construct an effective free energy for director andM@ximum splay while remaining aligned with the local di-
droplets valid at length scales large compared to droplet dit€ctor. Experiment$22,34 support this conclusion. Water
mensions. At these length scales, we can regard the droplef€OPIets in a nematic drop with homeotropic boundary con-
as point objectgas implied by the definitions of the densities ditions at its surface congregate at the center of the_r_lematlc
given abové At each point in space, there is a local director 40P, where the splay is a maximum. Boundary conditions at
n(r) along which the droplet dipoles wish to align. In the the outer surface of nematic d.rops can be changed from ho-
more microscopic picture, of course, the direction of thisMeotropic to tangential by adding a small amount of glycerol
local director corresponds to the far-field directgy. The (O the continuous water phase. In the passage from homeo-
effective free energy is constructed from rotationally invari-fOPiC o tangential boundary conditions, the topological
ant combinations oP;, C;;, n;, and the gradient operator charge of the nematic drop changes from 1 to zero, and point

V, that are also even undar —n. It can be expressed as a defects called boojumg30,25,31 form on the drop’s sur-
sum of terms face. The director splay is a maximum in the drop’s interior

near the boojums. Water droplets move from the drop cen-
ters to drop surfaces near boojums as the boundary condi-
tions are changed. The final configuration of two droplets in

. ) _ . a nematic drop with tangential boundary conditions is shown
whereF, is the Frank free energy;, describes interactions Fig. 15.

betweerP andn, Fc describes interactions betwe€ and To harmonic order im,,, the full effective free energy is
n involving gradient operators, and

Cij(r)=2 cf}&(r—r“).

F=Fy+Fp+FotFaign, 43

F= Kf d*[3(Vn,)?—=4mP,d,n,+4m(d,C,)3d,n,].
(47)

=-DQD, [(e*-n(r*)%—4 (44)  The dipole-bend coupling term of EQ45) does not contrib-
a ute becaus® is aligned along the far-field director. Thus

I:align:_DJ d3r Cij(r)ni(r)nj(r)

describes the alignment of the axefsalong the local direc- Vzn”=4waM[PZ(r)—(9ZCZZ(r)] (48
tor n(r). The leading contribution t& , is identical to that
for electric dipoles in a nemati@3,56), or
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(b}

. . . FIG. 16. (a) Configuration in which the large particle is to the
FIG. 15. Schematic representation of two water droplets WIthright of the small particle(b) The inverse configuration. The force

homeotropic boundary conditions at their outer surfaces in a nemf)etween the two particles is more aftractive in ciehan in case

atic drop with tangential bqundary condltlor_ls atits outer s_urface.%b). In both cases, the patrticle to the left is labeled 1, and that to the
The total hedgehog charge is zero, so there is one hyperbolic hedgn{:}ht 2

hog per droplet. The water droplets migrate to the region of maxi-
mum splay near a surface boojum. The splay near the boojum is
assumed to be sufficiently strong that both dipoles “prefer” to be

4
near the boojum rather than to form a chain. U(R)=4mK|pzp,Vep(R)+ gccVec(R)

9

2
1 =(cp.—c'p,)Vpe(R) |. 52
nﬂ(r)=—fd3r’|r_r,|ﬁ;[Pz(r')—a;CZZ(r’)]. (49) X3P e'PIVec(R) (52

This potential can be used to calculate the force between two
For a single droplet at the origin wite=n,, P,(r)=p,8(r)  droplets as a function of their separation. Consider, for ex-
(p,=*p), and C,(r)=2cd(r), and the above equation @mple, the interaction between two droplets labeled 1 and 2
yields exactly Eq(14). vv_|th respective radlal_ anda,. For S|mpI|C|ty,_ assume the

Droplets create far-field distortions of the director, which diPoles associated with each droplet are aligned along the

to leading order at large distances are determined by Ed)_osmvez axis, and that the center of_dropletl is at the origin
(48), that interact with the director fields of other droplets. and that of droplet 2 at=(0,0R) a distancer away along
This leads to an effective droplet-droplet interaction that carin€ POsitivez axis as shown in Fig. 16. The (31Ip0|e and quad-
be expressed to leading order as pairwise interactions béuPole moments scale respgectlvelyafganda , and we can
tween dipole and quadrupole densities. Using @§) in Eq.  Write p;= @a“ andc= —3a°/2. The dipoleAnsatzsolution
(47), we obtain of Sec. IV C, predictsx=2.04, and3=%x1.08=0.72. The

force between two droplets is then

F 1
R 3 d3r'TP.(r)Voe(r—r')P.,(r' F 6 120 24
4mK 2 fd F AT IPANVee(r=r1)PAr) T -~ @faiaiog + fPaja) e apajai(a,—ay) o5
+C,Ar)Vee(r—r")C,Ar")+Vpc(r—r') (53
X[CzAN)Po(r") =Pr)CoAr")], (500 The dominant force is the attractive dipole-dipole force pro-
portional toR™*. Recent experiments confirm this relation
where [57]. Interestingly the sign of the dipole-quadrupole force,

which dies off adR™ >, vanishes for particles of equal radius.
When the particles have unequal radii, the sign of this force
Vpp(f)ZﬁMa#%: 713(1_3 cos 0), depends on the relative position of the .Ia_rge and small par-
ticle. If a;<a,, it is repulsive(for 8>0); if a;>a,, itis
attractive, i.e., it is repulsive if the smaller ball is to the right
1 1 (positivez) of the large ball, and attractive if it is to the left
Vee(r) = —d30,0, = 75(9—90 co$ 6+105 co$ 0), (negativez).

wlpy
51
G VI. SUMMARY AND CONCLUSIONS

cos 6 Inverse nematic emulsions in which surfactant-coated wa-
VPC(r):&Z&MaMF: r—4(15 cog 6—9), ter droplets are dispersed in a nematic host have properties

that are distinct from those found in colloids, emulsions of

two isotropic fluids, and emulsions of nematic droplets in an

where 6 is the angle the separation vectomakes withng. isotropic fluid. The water droplets in these emulsions exhibit
The interaction energy between droplets at positioasdr’  anisotropic interactions that are repulsive at short range and
with respective dipole and quadrupole momepys p;, c, attractive at long range. The short-range repulsive interaction
andc’ is thus prevents coalescence of droplets and leads to long-term sta-
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bility, which can be eliminated by heating into the isotropic a topological charge of 1 rather than zero, and by spatially
phase. The long-range attractive force is dipolar and favoraonuniform director configurations. Many of the properties
chaining of droplets. of these droplets-within-drops systems such as chaining and
In this paper, we have presented a detailed theoreticahe tendency of the water droplets to concentrate near the
study of droplets and droplet interactions in inverse nematicenter of the nematic drop are explained by the analyses in
emulsions. Homeotropic boundary conditions at droplet surthis paper. Numerically accurate predictions about these sys-
faces produce a hedgehog director configuration around ea¢cbms, however, require, global minimization procedures that
droplet. Constraints on the global topological charge forcecan only be done numerically. Numerical algorithms to study
the nucleation of compensating topological defects out of th@roplets dispersed in confined geometries are currently under
nematic host. The compensating defect associated with @evelopmen{55].
single droplet in a cell with a parallel aligned director at Inverse nematic emulsions are a relatively new addition to
infinity can be a point hedgehog or a disclination ring sittingthe ever growing list of interesting soft materials, and they
above or below the droplet or encircling its equator in theoffer the hope of new and surprising properties. We are cur-
Saturn-ring configuration as shown in Fig. 5. Using variousrently investigating among other things the dynamics of
variational ansatzes, we showed that in the lowest energgiroplets in inverse emulsions and inverse emulsions of water
configuration, a single water droplet pulls a single pointdroplets in cholesteric rather than nematic liquid crystals.
hedgehog from the nematic to form a tightly bound dipole.
Th(_en, using a phenomenological model in wh|_ch the topo- ACKNOWLEDGMENTS
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